Z-prime mediated SUSY breaking scenario

Tatsuru Kikuchi (KEK) in collaboration with Takayuki Kubo (KEK, Sokendai)

PLB 666, 262 (2008); PLB 669, 81 (2008)
Introduction

• **Supersymmetry** is one of the most elegant and natural extension of the Standard Model. However even if supersymmetry holds, MSSM may not be the full story.
• Most of the problems of Standard Model remain unsolved, new ones introduced (FCNC, EDM) → **Issues of SUSY breaking**.
• Neutrino oscillation data brings us a motivation to go beyond the Standard Model. What’s the mechanism behind the tiny neutrino mass? maybe related to the B-L breaking scale → **U(1)**\(_\text{B-L} \) extended MSSM.
• From a top point of view, remnants of GUTs/string, typically, some **U(1)**’ may survive to low energy. This motivates us to consider **U(1)**’ extension of MSSM.
• Important to explore some **alternatives/extensions to MSSM**.
Table of contents

1. Introduction
2. Brief overview of U(1)’
3. Introduction to Z’ mediated SUSY breaking phenomenological implications - novel spectrum
 Heavy squarks/sleptons, light gauginos
4. An application: combination of Z’ mediation with anomaly mediation \(\rightarrow\) anomaly mediation becomes a consistent theory with no tachyonic slepton
5. Summary
A TeV scale Z’

• Several new physics models (GUTs, DSB, little Higgs, LED) often involve extra Z’ gauge boson.

• Experimental bound is, typically,

\[M_{Z'} \geq 600 - 900 \text{ GeV} \text{ (Tevatron, LEP II)} \]
\[\theta_{Z-Z'} \leq \text{a few } \times 10^{-3} \text{ (Z - pole)} \]

(CDF di-electron : 923 GeV (Z_{\text{seq}}), 822 GeV (Z_{\chi}), 822 GeV (Z_{\psi}), 891 GeV (Z_{\eta}))

• Discovery to \(M_{Z'} \sim 5 - 6 \text{ TeV} \) at LHC, ILC

\((pp \rightarrow Z' \rightarrow e^+e^-, \mu^+\mu^-, q\bar{q}) \) (depends on couplings, exotics, sparticles)

• SUSY Z’ generally at SUSY-breaking scale (unless along at flat direction)
Implications of a TeV-scale U(1)’

• Extended Higgs sector which is needed to break U(1)’
 – Rich Higgs phenomenology can be expected
• Possibility to raise Higgs mass
• Extended neutralino sector (Z’ gaugino and singlinos)
• Exotics (needed for anomaly-cancellation)
• Connection to a neutrino mass generation mechanism
• For the Majorana neutrinos, the mass scale is dictated by the B-L symmetry, and it is well-motivated to consider U(1)’=U(1)_B-L.
• Z’ decays into sparticles/exotics
• Possible flavor changing neutral currents
Coupling of a U(1)' to a Hidden Sector

[P. Langacker, G. Paz, L. Wang, I. Yavin, PRL 100:041802 (2008)]

- U(1)' may couple to both ordinary and hidden sectors

- \(Z' \) \(\tilde{Z}' \) (gauge boson and gaugino) mass difference may communicate supersymmetry breaking (\(Z' \) mediation)

- Unusual spectrum (similar to gaugino mediation):
 - scalar masses and A terms at 1 loop
 - MSSM gaugino masses at 2 loop

- Predictive, but details depend on U(1)' charges and Yukawas

- Motivated mini split SUSY (FCNC, EDM suppression)
Soft masses in Z' mediation

- All the squarks/sleptons receive a quantum correction to the soft masses from Z' gaugino.

\[
\tilde{m}^2 \sim \frac{\alpha'}{4\pi} \frac{M^2_{Z'}}{\tilde{Z}'}
\]

- On the other hand, the MSSM gaugino masses pick up their soft masses at the two loop level.

\[
M_a \sim \frac{\alpha'}{4\pi} \frac{\alpha_a}{4\pi} M_{\tilde{Z}'}
\]
Description for calculating spectrum in Z’ mediation

• Since Z’ mediation belongs to a class of gaugino mediation, we put no-scale boundary condition at SUSY breaking scale:

\[\tilde{m} = M_a = 0, \quad M_{\tilde{Z}}, \neq 0 \text{ at } \mu = \Lambda_S \]

• Vanishing MSSM gaugino masses (M=0) is the difference between Z’ mediation and gaugino mediation.

• The resultant mass spectra have a large mass hierarchy between squarks/sleptons and gauginos:

\[M_{\tilde{Z}}, \gg \tilde{m} \gg M_a \]

• A typical mass spectra for a fixed gaugino mass M=1TeV (mini spit SUSY like):

\[M_{\tilde{Z}}, \sim 10^3 \text{TeV}, \quad \tilde{m} \sim 10^2 \text{TeV}, \quad M_a \sim 1\text{TeV} \]
Z’ mediation combined with anomaly mediation

[T.K. and T. Kubo, PLB 669, 81 (2008)]

- Overall scale of Z’ mediation can in principle be lowered so that the scalar masses are set at TeV scale.
- It is interesting to combine Z’ mediation with the other SUSY breaking scenario. We consider the anomaly mediation as the other source of SUSY breaking.
- Its automatic for Z’ mediation to give positive contribution to cure the tachyonic slepton problem in anomaly mediation.

\[
\tilde{m}^2 \bigg|_{Z'\text{-med}} \sim Q^2 \frac{\alpha'}{4\pi} M_{Z'}^2 > 0
\]

- A sample spectrum

\[
\tilde{m} = \tilde{m}^{\text{AMSB}} + \tilde{m}^{Z'} \sim \text{TeV}
\]

\[
M_a = M_a^{\text{AMSB}} \sim \text{TeV}
\]

\[
M_{Z'} \sim 10^2 \text{TeV}, \quad \tilde{m}^{Z'} \sim 1 \text{TeV}, \quad M_a^{Z'} \sim 1 \text{GeV}
\]
RG flow of slepton soft mass in Z' mediation combined with anomaly mediation

[T.K. and T. Kubo, PLB 669, 81 (2008)]

- Pure anomaly mediation predicts the tachyonic sleptons.
- We consider Z' mediation combined with anomaly mediation. Z' mediated contribution gives positive contribution so as to cure the tachyonic slepton problem in anomaly mediation.
Mass spectra in Z' assisted anomaly mediation

[T.K. and T. Kubo, PLB 669, 81 (2008)]

- Sleptons become heavier for larger U(1)' gauge coupling constant

<table>
<thead>
<tr>
<th>$(g_{B-L} \quad M_{Z'_{B-L}})$</th>
<th>(0.1, 3 TeV)</th>
<th>(0.3, 3 TeV)</th>
<th>(0.5, 3 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\tilde{\chi}_{1,2,3,4}^0}$</td>
<td>132, 455, 719, 726</td>
<td>131, 455, 742, 749</td>
<td>131, 454, 745, 754</td>
</tr>
<tr>
<td>$m_{\tilde{\chi}_{1,2}^\pm}$</td>
<td>133, 717</td>
<td>132, 741</td>
<td>132, 746</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$</td>
<td>1297</td>
<td>1298</td>
<td>1299</td>
</tr>
<tr>
<td>$m_{\tilde{e},\tilde{\mu}_{1,2}}$</td>
<td>318, 360, 299, 355</td>
<td>864, 881, 855, 877</td>
<td>941, 957, 931, 953</td>
</tr>
<tr>
<td>$m_{\tilde{\tau}_{1,2}}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{\tilde{\nu}_{1,2}}$</td>
<td>1216, 1228, 979, 1121</td>
<td>1246, 1257, 1004, 1146</td>
<td>1252, 1263, 1007, 1149</td>
</tr>
<tr>
<td>$m_{\tilde{d},\tilde{s}_{1,2}}$</td>
<td>1219, 1226, 1088, 1211</td>
<td>1248, 1256, 1115, 1240</td>
<td>1255, 1262, 1119, 1247</td>
</tr>
<tr>
<td>$m_{\tilde{b}_{1,2}}$</td>
<td>1088, 1211</td>
<td>1115, 1240</td>
<td>1119, 1247</td>
</tr>
<tr>
<td>m_h</td>
<td>124</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>m_H</td>
<td>663</td>
<td>685</td>
<td>690</td>
</tr>
<tr>
<td>m_A</td>
<td>662</td>
<td>685</td>
<td>690</td>
</tr>
<tr>
<td>m_{H^\pm}</td>
<td>667</td>
<td>690</td>
<td>694</td>
</tr>
</tbody>
</table>
Conclusion

- U(1)’ coupling to hidden sector quite possible but little explored. Such a scenario is dictated as \(Z' \) mediated SUSY breaking.

- \(Z' \rightarrow \tilde{Z}' \) mediation \(\rightarrow \) interesting (hierarchical) mass spectra; motivated form of mini split SUSY.

- \(Z' \) mediation predicts novel spectrum. The details depend on U(1)’ charges, but usually, squarks, sleptons, at 10 -100 TeV while gauginos are at 100 GeV-1 TeV.

- \(Z' \) mediated contributions to the soft SUSY breaking masses are always there! This is true if U(1)’ gaugino feels the SUSY breaking. From neutrino viewpoint, it is natural to consider a gauged U(1)\(_{B-L}\).
Combining the other SUSY breaking scenario (anomaly mediation) with Z' mediation is interesting possibility.

- We have considered the case of Z' mediation combined with anomaly mediation, which gives a consistent framework for anomaly mediation by putting the scalar mass at a TeV scale. So the gaugino mass from Z' gives negligible contribution.

Interesting mass spectra.

- Gaugino masses ← determined by anomaly mediation
- Squark/Slepton masses ← determined by both anomaly mediation and Z' mediation

Conclusion