目次

（原子力）
☆高温プラズマ更に進展
 L H D第 1 8 サイクル 2

☆核融合炉発電システム
 熱・流動試験装置完成 6

☆プラント配管の減肉
 検査手法の最適化へ 8

（地熱）
☆武佐岳 S M M G － 2 D
 石賓，6月の噴気計画 19

☆武佐岳地熱系モデル
 H 2 2 年度既往調査 20

☆地熱・温水を利用する
 地域活性化の取組（中） 22

（高エネルギー）
☆S ニュートリノ探索実験
 M L F で最高感度を目指す 12

☆新興国の地熱開発支援
 J I C A 、円借款契約 26

（火力）
☆G T 翼遮熱層の劣化
 レーザー励起で検出 17

（モビルティ）
☆東京モーターショー
 今期のテーマと狙い 27
Sニュートリノ探索実験
MLFで最高感度を出す

KEK（素粒子）の花尾和純准教授
を中心に北村／京大／阪大／JAEA
の研究者で構成される共同チームは
J-PARCの3eV粒子ビームを
用いて大量のμ（ミュー粒子）を生
成し、μ粒子の静止電流で発生する
反ニュートリノ（νe）が反電子ニュートリノ（νe）に振動する現象を捉える「ステライルニュートリノ探索実験」を計画している。標準模型を超えた第4世代のニュートリノ探索実験は、アカデミックな業界における「発見すればヒッグス粒子以上のインパクト」があるとされ、

3Fの設営場所を示す花尾准教授

国際的に突出したクオリティー（高感査・高信頼性）の高さが期待できる本実験は、2018年度のスタートを予定している。

ニュートリノ振動
ニュートリノ振動は、ニュートリノ
に質量があるときのみ起こる（199
8年までニュートリノは質量が無いたと
信じられ、実験も人々をコンピックス
するレベルではなかった）。2世紀間
のニュートリノが異なる質量を持てば
量子力学的な運命をかねるのだが、ねじれ
が生じ振動が起こる。ニュートリノ振動
があると、未だフレーバーニュートリ
ノと混合するようになる（ニュートリ
ノの種類と質量の固有状態が違う時に
混合角θで混じり合う）。ニュートリノ
型一様、電子型→ニュートリノの振動はこ
の12年間で良く研究されてきた。し
かし、電子型→ニュートリノの混合は小さ
くて2012年まで良く分かっていな
かった。→最近になって加速器、原子炉実験で発見された。

図1 ニュートリノ振動

図2 新しいニュートリノ振動

◆新しいニュートリノ振動
 ◎新しい振動はと座表でステライルニュートリノ「νe」が現れる。

◆ステライルニュートリノ探索
電弱相互作用を通じて原子核反応で、検出可能な（アクティブ）ニュートリノと異なり、原子核全反応
しないステライルニュートリノはどのようにして探索されるのか？ほとんど
のニュートリノの実験結果は、これまでに大きなニュートリノ振動の仕組み（パラメータ）を導くことができる。しかし、実験予測と異なるニュートリノ事象の増加（超過）や減少（欠損）が世界の研究グループから指摘されるようになり、当初は真面目に考えられなかった「第4のニュートリノ」を実験的に検証しようとする動きが出てきた。20年以上前にLHCの前身であるLEP（電子−反電子衝突加速器）実験における2°ポジションの崩壊モード測定により、弱い相互作用をするニュートリノ（尋常粒子）の世代は「3世代」までとされ、これは標準モデルを超えた“弱い相互作用をしない”4つ目のニュートリノの存在を排除するものではない。通常のニュートリノ振動では説明できないニュートリノ事象の超過または欠損を表1にまとめた。

表1 ニュートリノ事象

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Neutrino source</th>
<th>signal</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSND</td>
<td>μ Decay-At-Rest</td>
<td>$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$</td>
<td>3.8σ</td>
</tr>
<tr>
<td>MiniBooNE</td>
<td>π Decay-In-Flight</td>
<td>$\nu_\mu \rightarrow \nu_e$</td>
<td>3.4σ</td>
</tr>
<tr>
<td>Ga (calibration)</td>
<td>e capture</td>
<td>$\nu_e \rightarrow \nu_x$</td>
<td>2.8σ</td>
</tr>
<tr>
<td>Reactors</td>
<td>Beta decay</td>
<td>$\bar{\nu}_e \rightarrow \bar{\nu}_x$</td>
<td>3.0σ</td>
</tr>
</tbody>
</table>

上記のニュートリノ実験で指摘された超過・欠損が本当かどうか、世界中で検証する機洗な競争が始まっており、今後5〜10年で大体の結果が出揃うとみられる（線源、原子炉、加速器などアプローチによって一長一短がある）。

◇欠損→2015年くらいから原子炉や線源を使った実験が開始予定。
◇線源は強力な線源作成、移動が難しい。

原子炉は炉に近いので、原子炉高速中性子背景事象コントロールが困難。

◇超過→世界でいくつかの実験が計画中（検出器開発が必要なものは結果が出るまで10年くらい要する）。

＜MLFにおけるν探索実験＞
KEK・大学がJ−PARCのMLF（物理・生命科学）施設で計画している実験は、過去にLSND（米国）グループが行った加速器による反ニュートリノ実験（Double Chooz）で用いたものと同タイプの液体精製器を直径6mのタンクに収めたもの。3GeVシンクロトロンのパルス陽子ビームは、ターゲットで対当すると大量のミュオン粒子を生成する。そのミュオン粒子が崩壊してできた反ニュートリノは360度全方位に飛び出す。その発生源から約20mの近距離に置かれた検出器がステライルニュートリノが関与（振動）する事象（反電子ニュートリノの出現を待ち続ける仕組みとなっている）。

◇検出器
◇デザインについてはタンクの強度・耐震性等について計算済み。
◇Well establishe検出器。
◇Double Chooz/Daya-Bay検出器を作製したコラボレータがいる。

図3 検出器設置場所

ニュートリノ→反電子ニュートリノ事象を捉える点で共通しているが、本プロジェクトにおける実験感度は倍度、「LSNDとは段違いな性能向上が望める（丸山浩教授）」。

MLF3階に設置される50T検出器は、東北大学がフランスの原子炉ニュートリノ実験（Double Chooz）で用いたものと同じ类型的液体精製器を直径6mのタンクに収めたもの。3GeVシンクロトロンのパルス陽子ビームは、ターゲットで対当すると大量のミュオン粒子を生成する。そのミュオン粒子が崩壊してできた反ニュートリノは360度全方位に飛び出す。その発生源から約20mの近距離に置かれた検出器がステライルニュートリノが関与（振動）する事象（反電子ニュートリノの出現を待ち続ける仕組みとなっている）。

◇実験の特長（μ静止崩壊のν利用）
◇粒子ビーム衝突により標準的な実験では測定の妨げとなるμ中間子由来のニュートリノ、K中間子由来のニュートリノも発生する。しかし、本実験ではミュオン（μ）の長い寿命を使って、μから出るニュートリノ（ν）のみを選
選択したニュートリノデシジョン（π^0 74\%）

ν_{total}
$\nu_{\text{from } \mu}$
$\nu_{\text{from } \pi}$
$\nu_{\text{from } K}$

図5

図6 ニュートリノ挾動パラメータに対する感度予測

10^{-4} レベル。

MLFは大規模パルスビームを使える。また過去の実験に比べて、π の生成率（π/p）が10倍大きい。

図6はニュートリノ挾動パラメータに対する感度予測を表したもので、領域が最も左に寄ったMLF実験の高感度で低い競争力を示している。

（今後の期待）

現在計画中の実験は、検出器の製作が2016年に着手されれば、2018年から観測を開始できる。反電子ニュートリノへの挾動を厳しく見積もった計算でも5年間で約500事象のデータが期待できるという。最初の1～2年間でも2桁台のデータが収集できれば中間発表を行う。「J・PARCのグレードアップされたリニアック（181MeV→400MeV）により、ビームエミッタンスが細くエネルギーも揃ったパルス陽子ビームを使う点が何よりも有利。実験に必要な正ニュートリノの静止崩壊のみのニュートリノを使えるため、信頼度が過去の実験とは比較にならない。LSND実験では、K中間子とπ中間子由来のニュートリノも混じるため信頼度が低かった。ステイライシュニュートリノが真剣にレプリングの対象となる5σ以上のデータをMLFでは狙っていきたい（丸山准教授）」としている。