Long-Baseline Neutrino Oscillation Experiments in Japan

Taku Ishida (IPNS, KEK)
For the K2K collaboration, the T2K collaboration, and the J-PARC neutrino beam-line construction group

• Final Results from K2K
• T2K Phase-I Physics Goals
• Construction Status of the Neutrino Facility at J-PARC towards Commissioning in April, 2009
Introduction

K2K: the 1st accelerator-based long base-line experiment
KEK 12GeV PS(5kW) \(\Rightarrow \) Super-Kamiokande

- Working accelerator / adequate base-line length and beam energy, good \(E_\nu \) determination / good \(\mu\text{-}e \) separation / large volume
- Evidence for the muon neutrino oscillation
- Search for \(\nu_\mu \to \nu_e \) oscillation
 - Good BG rejection / systematic error / how to improve
- Cross section measurements / MC tuning at 1 GeV region
 - Fine-grain / water Cherenkov near detectors: CCQE / NC\(\pi^0 \)

T2K: the 1st super-beam long base-line experiment

JPARC MR (750kW) at Tokai \(\Rightarrow \) Super-Kamiokande

- Discovery of the 1st \(\nu_\mu \to \nu_e \) appearance signal
 - \(\Theta_{13} \): last unknown mixing angle in 3 neutrino scheme
 - Small, but non-zero, \(\theta_{13} \) is the key for the future CPV measurement.
- Precision measurement of \(\theta_{23} \) and \(\Delta m_{23}^2 \) in \(\nu_\mu \) disappearance mode
 - Are 2nd and 3rd generations symmetric?
- Search for the sterile components by detecting neutral current
 - If it does: modification of lepton physics to accommodate extra members of lepton(s)

Valuable outcomes for the next step!
The K2K Experiment

Wide-band, sub-GeV neutrino (on-axis) beam
- $<E_{\nu}> \approx 1.3\text{GeV}$
- $\nu_e/\nu_\mu \approx 1\%$
- 1.1μs spill width in 2.2s cycle
- $\approx 5.4 \times 10^{12}$ protons per pulse

Total Delivered [SK-live] Protons-On-Target:
$10.49 [9.22] \times 10^{19}$
For A Stroll...

- Al target
- Double HORNs
- π-monitor($p\pi, \theta\pi$)

Target Station

Decay Section (200m)

Muon Pit

Primary Beam-line

$\pi^+ \rightarrow \mu^+ + \nu_\mu$

Front Detectors

ν_μ

Direction(μ)

Direction(ν)

ν Spectrum/Rate

TRISTAN RING (B-factory)

East Counter Hall

12GeV PS

1.1 μs pulse/2.2s

6~7×1012 ppp

You are here

Photograph by T.K.Ohska
Event Selection

-500μs TDIFF 500μs

|ΔT|<500μsec, no pre-activity (Decay-e cut) 578k
≥20MeV Deposit Energy 53k
FC, Evis>30MeV, Fiducial Volume(Dwall>2m) 115
|ΔT|=-0.2 - +1.3μsec 112

[Expected w.o. oscillation: 158.1 +9.2 / -8.6]

KEKTC07: KEK Topical Conference, February 2007

T. Ishida
IPNS, KEK
νμ disappearance results

Reconstructed E_ν spectrum for 58 single ring, μ-like events

PRD 74, 072003 (2006)

Null oscillation probability

- Norm.: 0.06% (3.4σ)
- Shape: 0.42% (2.9σ)
- Shape+Norm.: 0.0015% (4.3σ)

(1.0, 2.75x10^{-3})

1.9~3.5x10^{-3} eV^2
Event selection for ν_e appearance search

T.Ishida

IPNS, KEK

Tight e-like cut

<table>
<thead>
<tr>
<th>Event Selection</th>
<th>$\nu\mu$ MC</th>
<th>beam ν_e</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2K-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCFV</td>
<td>81.1</td>
<td>0.81</td>
<td>55</td>
</tr>
<tr>
<td>Single ring</td>
<td>50.92</td>
<td>0.47</td>
<td>33</td>
</tr>
<tr>
<td>Tight e-like cut</td>
<td>2.66</td>
<td>0.40</td>
<td>3</td>
</tr>
<tr>
<td>$E_{vis} > 100$ MeV</td>
<td>2.47</td>
<td>0.40</td>
<td>2</td>
</tr>
<tr>
<td>No decay-e</td>
<td>1.90</td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>Pi0 cut</td>
<td>0.58</td>
<td>0.17</td>
<td>0</td>
</tr>
<tr>
<td>K2K-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCFV</td>
<td>77.4</td>
<td>0.86</td>
<td>57</td>
</tr>
<tr>
<td>Single ring</td>
<td>49.41</td>
<td>0.52</td>
<td>34</td>
</tr>
<tr>
<td>Tight e-like cut</td>
<td>3.21</td>
<td>0.44</td>
<td>5</td>
</tr>
<tr>
<td>$E_{vis} > 100$ MeV</td>
<td>2.93</td>
<td>0.44</td>
<td>5</td>
</tr>
<tr>
<td>No decay-e</td>
<td>2.17</td>
<td>0.39</td>
<td>4</td>
</tr>
<tr>
<td>Pi0 cut</td>
<td>0.74</td>
<td>0.21</td>
<td>1</td>
</tr>
</tbody>
</table>

In total:

<table>
<thead>
<tr>
<th>#BG</th>
<th>= 1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>#observed</td>
<td>= 1</td>
</tr>
</tbody>
</table>

Both opening angle and ring pattern are required to be e-like.
Special 2nd ring search is applied to 1ring e-like candidates.

Invariant mass distribution for atmospheric ν

Data
atmospheric ν MC
π^0 induced event

Efficiency for signal ν_e : 70% / π^0 BG : 30%
The only-one ν_e candidate

What is my nature?
Exclude region for ν_e appearance search

K2K-I+II (#obs.=1, #B.G.=1.70)

Comparison with the reactor experiment

$\sin^2 2\theta_{\mu e} \sim \frac{1}{\lambda} \sin^2 2\theta_{13}$

upper limit (90% CL) $\sin^2 2\theta_{\mu e} = 0.13 \pm 0.01 @ 2.8 \times 10^{-3} \text{ eV}^2$

PRL 96, 181801 (2006)
Neutrino-Nucleus Interactions

Neutral Current π^0 production PLB619 (2005) 255
- $\sigma(\text{NC}1\pi^0)/\sigma(\text{CC Incl.}) = 0.064^{+0.001}_{-0.007}\text{ syst.}$

CC Coherent pion production PRL95 (2005) 252301
- $\sigma(\nu+C\rightarrow\mu+C+\pi^+)/\sigma(\text{CC Incl.}) < 0.60 \times 10^{-2}$

CC Quasi-Elastic Interaction PRD74 (2006) 052002
- “Axial Vector Mass” in the axial-vector dipole form factor by q^2 dist. fit = 1.20$^{+0.12}_{-0.12}$GeV
The T2K Experiment

A next-generation long-baseline neutrino oscillation experiment, designed to observe the first signal of ν_e appearance

- Pseudo-monochromatic, low-energy off-axis beam.
- Off-axis angle is tunable
- Quasi-Elastic interactions are dominant, suitable to minimize the electromagnetic shower background caused by the neutral current π^0 production
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam kinetic energy</td>
<td>50 GeV (30 GeV@T=0)</td>
</tr>
<tr>
<td># of protons / pulse</td>
<td>3.3×10^{14} ppp</td>
</tr>
<tr>
<td>Beam power</td>
<td>750 kW</td>
</tr>
<tr>
<td>Bunch structure</td>
<td>8 bunches</td>
</tr>
<tr>
<td>Bunch length / spacing</td>
<td>58 ns / 598 ns</td>
</tr>
<tr>
<td>Spill width</td>
<td>4.2 μs</td>
</tr>
<tr>
<td>Beam Emittance</td>
<td>6_{π} mm.mr (10_{\pi}@30 GeV)</td>
</tr>
<tr>
<td>Cycle</td>
<td>3.64 sec (2.1 sec@30 GeV)</td>
</tr>
</tbody>
</table>

- 1 x 10^{21} protons per year
 [130 days operation per year, 50 GeV]
Bird’s-Eye View (Feb. 2006)

- Neutrino Facility at J-PARC

- Hadron Experimental Hall
 - 50 GeV MR
 - A round=1,600m

- Materials & Life Experimental Hall
 - 3GeV RCS
 - A round=350m

- Linac (330m)

- MR tunnel became continuous in last June
- Commissioning Linac started last December
- Detailed report will come tomorrow
T2K Layout

- Quasi-monochromatic, sub-GeV Off-Axis Beam
- ∼ 2,200 (∼1,600) νμ (CC) interactions at Super-K [OAB 2.5°, 22.5 kt-yr]
Measurement of θ_{23}, Δm_{23}^2

- Use 1R μ-like events
 - Large QE fraction
 - Beam with small high energy tail
 \Leftrightarrow $\sin^2 2\theta$ less sensitive to systematics

- Clear deficit is expected in the reconstructed ν energy
 - $\delta E = \delta (E_{\nu \text{rec}} - E_{\nu \text{true}}) \sim 60\text{MeV}$
 \Leftrightarrow $< 10\%$ measurement on Δm^2

\[
\nu_\mu + n \rightarrow \mu^- + p
\]

\[
E_{\nu \text{rec}} = \frac{m_N E_\mu - m_\mu^2 / 2}{m_N - E_\mu + p_\mu \cos \theta_\mu}
\]

\[
R(\text{measured} / \text{expected}) = \frac{\nu_\mu + n}{\mu^- + p}
\]

\[
\sin^2 2\theta \ \Delta E \sim 60\text{MeV}
\]

\[
\Delta m^2 = \delta (E_{\nu \text{rec}} - E_{\nu \text{true}}) \sim 60\text{MeV}
\]
Sensitivity for $\sin^2 2\theta_{23}$, Δm_{23}^2

OA2.5°, 5×10^{21} \text{ POT}

~ 5 years @ full Intensity

Assumed Systematic Errors

- Normalization: 5%
- non-QE/QE ratio: 5%
- Energy scale: 1%
- Spectrum Shape: 20%
- Beam Width: 5%

\[
\delta(\sin^2 2\theta) = 0.01
\]

\[
\delta(\Delta m^2) = 1 \times 10^{-4} \text{eV}^2
\]

Errors will be further reduced by near detector measurements and pion production measurements (CERN NA49)

KEKTC07: KEK Topical Conference, February 2007
Near Neutrino Detectors

- **Off-axis detector**
 - FGD, TPC, Ecal,.. In UA1 magnet
 - Spectrum / Cross section / νe contamination

- **On axis detector: NGRID**
 - 1mx1mx[0.1mx10lyr]
 - Monitor beam direction

- **Scintillator+WLS fiber with**
 - MRS APD (Russia)
 - MPPC (Hamamatsu)

```
~1.5 events /spill
1M / month
@center cell
```

A few cm beam center resolution

```
Near Detector at 2km
[ Working for approval ]
```
Sensitivity to θ_{13}

T.Ishida
IPNS, KEK

- Expected signal + BG
- Total BG
- BG from ν_{μ}

5 x 10^{21} POT

(OA2.5°)

$\sin^2 2\theta_{13} = 0.1$
$[\sin^2 \theta_{23} = \frac{1}{2}]$
$\Delta m_{23}^2 = 2.5 \times 10^{-3}$

$\Delta m_{13}^2 (eV^2)$

0.008 at $\delta_{CP} = 0/\pi$

BG subtraction: 10% error

$\sin^2 \theta_{13}$

of events in $E_{rec} = 0.35$~0.85 [GeV]

<table>
<thead>
<tr>
<th>$\sin^2 2\theta_{13}$</th>
<th>Background in Super-K</th>
<th>Signal [~40% eff]</th>
<th>Signal + BG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ν_{μ}</td>
<td>ν_e</td>
<td>total</td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

KEKTC07: KEK Topical Conference, February 2007
Beam-line Construction Group

KEK

- Neutrino group, IPNS (Core)
 - Every beam line components (except S.C.magnets / cryo.)
 - DAQ control / ND
- Hadron group, IPNS
 - Monitor / N.C.magnets / Power supply
- Cryogenics group, IPNS
 - Cryogenics / Target Helium circulation system
- Cryogenics science center
 - Superconducting magnet / Cryogenics
- Mechanical Engineering Center
- Radiation Science Center

Our Acknowledges go to

Many Valuable Advices from Nu-TAC

Many supports from other experiments’ experiences through neutrino beam instrumentation (NBI) WS

In collaboration with

- U. Tokyo: Primary beam monitor
- Kyoto U: Primary beam monitor, Muon monitor
- UK: Target, Target remote handling, Beam window, Baffle, Dump
- Canada : Remote chamber for the most downstream monitors, OTR, Remote maintenance
- US: Horn, Beam monitor, S.C. corrector magnets, GPS, Monitor electronics
- France: Quench detection system
- Korea: Proton monitor electronics
Primary Beam-line

Completed in Last December!

Material Life & Science
Preparation Section
March, 2006

Primary Beam-line
Preparation Section
50GeV
July, 2006

Completed in Last December!
Superconducting Combined Function Magnet

- 28 SCFM in total, D: 2.6 T, Q: 18.6 T/m
- Length: 3.3m
- Current: 7,345A @ 50GeV

- Mass production started
 - 12 magnets / 6 doublets in hand (FY06)
 - 6D in FY07, 2 in FY08
- Refrigerator / Transport line construction: ’06 ~’08
- Installation/system testing in CY’08
Beam Monitors

- **Configuration**
 - Position: Electro-static monitor (ESM)
 - Profile: Segmented Secondary Emission Monitor (SSEM), OTR
 - Intensity: CT
 - Loss monitors (BLM): Ionization chamber
- **Readout by COPPER/KEK-DAQ**

<table>
<thead>
<tr>
<th>Sector</th>
<th>Intensity (CT)</th>
<th>Center (ESM)</th>
<th>Profile (SSEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep. Sect.</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Arc sect.</td>
<td>0</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>FF sect.</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Beam loss monitor will be placed along the beam line.
Target Station

1/16, 2007

Final Focusing Section / ARC
Target Station

Ti-alloy Beam Window with pillow-seal

Helium-Cooled Graphite Target in the 1st Horn

Supported by CCLRC/RAL and BARTOSZEK ENGINEERING
Horn / Target R&D

Successful operation at 320kA / Long-term Test

Graphite tube (2mm-thick)
Decay Volume (Under 3NBT)

All cooling channels connected by 1,080 U-shape pipes.

Oct., 2005
Hadron Absorber (Beam Dump)

- Semiconductor detector array / Ionization chamber array

Target Station

Decay Volume

Hadron Absorber (Beam Dump)

Helium Vessel

Muon Monitors

OA 2°

2.5°

10m

4m

Graphite Blocks

Beam

Aluminum cast with inside water pipe
Summary

- **K2K** has confirmed muon neutrino oscillation at 4.3σ.
 - Allowed region for $\nu_\mu \rightarrow \nu_\tau$ oscillation for Δm^2 at $\sin^2 2\theta = 1$ is $1.9-3.5 \times 10^{-3} \text{eV}^2$ (90% C.L.).
 - No evidence for ν_e appearance. $\sin^2 2\theta_{\mu e} > 0.13$ at $2.8 \times 10^{-3} \text{eV}^2$ (90% C.L.).

- **T2K**, the 1st super-beam LBL experiment
 - Off-axis beam configuration, tunable between $2^\circ \sim 2.5^\circ$
 - $\Delta m^2_{\text{atm}} = 2.7 \sim 3.3 \times 10^{-3} \text{eV}^2$
 - 90% CL Sensitivities for the phase-I
 - $\Delta [\sin^2 2\theta_{23}] \sim 0.01 \Delta [\Delta m^2_{23}] \times 10^{-4} \text{eV}^2$
 - $\sin^2 2\theta_{13} > 0.008 \text{ (90%) X 20 improvements}$

- **J-PARC** neutrino facility: construction is under going:
 - Decay volume (50m finished), primary beam line, target station
 - Beam line equipment: shifting from R&D phase to actual production
 - International contributions for crucial parts of the beam line components.
 - Passing some of critical milestones: SCFM doublets, 1st Horn operation with 320 kA

Much of struggle from now, towards beam commissioning in April, 2009

And towards new result in ~ 2010 !