Liquid and solid lasers for optimum performance of the Resonance Ionization Laser Ion Source at ISOLDE/CERN

V.N. Fedosseev, CERN, EN department

Workshop on Low-Energy Radioactive Isotope Beam (RIB) Production by In-Gas Laser Ionization for Decay Spectroscopy at RIKEN, 10-11 December 2012, RIKEN-Wako
Outline

- The ISOLDE facility at CERN
- Ionization in a hot cavity
- Evolution of RILIS lasers
- Dual dye-Ti:Sa laser system of RILIS
- New modes of RILIS operation
- RILIS operation in 2012
- Dual narrow-band RILIS
- Outlook
 - *Workshop announcement*
Online Isotope Mass Separator

The Online Isotope Mass Separator (ISOLDE) is a unique source of low-energy beams of radioactive isotopes – atomic nuclei that have too many or too few neutrons to be stable. The facility, located at the Proton-Synchrotron Booster (PSB), is like a small alchemical factory, changing one element into another.
ISOLDE isotope separator on-line facility

Delivers yearly 3200 h of radioactive ion-beams to 30 experiments by means of two target stations

Single charge:
- Surface
- Plasma
- RILIS
- ECR

Mass separation

Post Acceleration
Laser ionization in a Hot Metal Cavity

First RIBs produced in 1990-1991

at PNPI (Gatchina, Leningrad district):

Application of a high efficiency selective laser ion source at the IRIS facility
G.D. Alkhazov, L.Kh. Batist, A.A. Bykov, V.D. Vitman, V.S. Letokhov 1,
V.I. Mishin 1, V.N. Panteleyev, S.K. Sekatsky 1 and V.N. Fedoseyev 1
Leningrad Nuclear Physics Institute, Academy of Sciences of the USSR, Gatchina, Leningrad district 188350, USSR
Received 6 December 1990 and in revised form 25 March 1991

Yb, Nd, Ho - off-line
Ho - on-line

at CERN:

Chemically selective laser ion-source for the CERN–ISOLDE on-line mass separator facility
V.I. Mishin 1, V.N. Fedoseyev 1, H.-J. Kluge 2, V.S. Letokhov 1, H.L. Ravn 3, F. Scheerer 2,
Y. Shirakabe 3, S. Sundell 3, O. Tengblad 3 and the ISOLDE Collaboration
VHE Division, CERN, Geneva, Switzerland
Received 26 November 1992

Yb, Tm, Sn, Li - off-line
Yb - on-line
Efficiency:

\[\varepsilon = \frac{P_{\text{ionisation}}}{P_{\text{ionisation}} + P_{\text{Effusion}}} \]

\[\varepsilon = \frac{v_{\text{rep}} \varepsilon_{\text{ion}}}{v_{\text{rep}} \varepsilon_{\text{ion}} + \frac{2dv}{3L^2}} \]

Selectivity = \frac{\text{Laser Ionization Efficiency}}{\text{Surface Ionization Efficiency}}

=> depends on the ionization potentials of isobar atoms

\[\varepsilon_{\text{laser}} = 2\% - 30\% \]

\[\varepsilon_{\text{surface}} \begin{cases} > 5\% & \text{alkalies} \\ = 0.1\% - 2\% & \text{In, Ga, Ba, lanthanides} \\ < 0.1\% & \text{others} \end{cases} \]
RILIS at ISOLDE-PSB

Installed in 1993

CVL lasers: \(\nu_{\text{rep}} = 11.000 \text{ Hz} \)
Oscillator + 2 amplifiers
2-3 dye lasers with amplifiers, nonlinear crystals BBO:

\[
\begin{align*}
P_{\text{total} \ Cu} & \leq 75 \ W \\
P_{\text{dye}} & \leq 8 \ W \\
P_{2\omega} & \leq 2 \ W \\
P_{3\omega} & \leq 0.2 \ W
\end{align*}
\]
Copper vapor laser: High peak power (short pulse); high repetition rate, good beam quality (unstable resonator)

Dye lasers: Wide tuning range, ionization schemes with up to 3 steps
RILIS operation since 1994

- Annually increasing demand for RILIS beams
- Feasible ‘hours of operation’ limit reached in 2002
- Increase requires greater reliability and a larger laser installation – RILIS UPGRADE
The 3 stages of RILIS Upgrade

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The pump laser upgrade¹:</td>
</tr>
<tr>
<td></td>
<td>- Change from copper vapour laser (CVL) to commercial Nd:YAG laser</td>
</tr>
<tr>
<td></td>
<td>Aim: Maintain or improve the dye laser performance whilst increasing the reliability of the overall system.</td>
</tr>
<tr>
<td>2</td>
<td>The dye laser upgrade:</td>
</tr>
<tr>
<td></td>
<td>- 3 New state of the art dye lasers to replace the original dye lasers</td>
</tr>
<tr>
<td></td>
<td>Aim: Improve the dye laser performance, ease of use and reliability, make full use of the capabilities of the new pump laser.</td>
</tr>
<tr>
<td>3</td>
<td>Install an independent and complementary Ti:Sa based RILIS laser setup²,³:</td>
</tr>
<tr>
<td></td>
<td>- 2 pump lasers and 3 Ti:Sa lasers plus harmonic generation units</td>
</tr>
<tr>
<td></td>
<td>Aim: Extend the tuning range of the RILIS setup to enable access to the large number of ionization schemes developed for Ti:Sa lasers.</td>
</tr>
<tr>
<td></td>
<td>Reduce switching time between elements to allow for more condensed scheduling of RILIS runs.</td>
</tr>
</tbody>
</table>

Additional on-going developments

- Improve **monitoring** and **automation** of the RILIS parameters
- Implement **machine protection** and alert systems to enable **on-call operation**
- Improve the **selectivity** of RILIS through ion source developments

¹ The ISOLDE RILIS pump laser upgrade and the LARIS Laboratory

² A complementary laser system for ISOLDE RILIS
S Rothe et al: Journal of Physics: Conference Series 312 (2011) 052020

³ Upgrade of the RILIS at ISOLDE: New lasers and new ion beams
Replacement of Copper Vapor Lasers by Solid-State Lasers

“The ISOLDE RILIS pump laser upgrade and the LARIS Laboratory”
CREDO dye lasers made by Sirah GmbH installed in Feb/Mar 2010

- Optimized for 10 kHz EdgeWave pump
- Accept both 355 and 532 pumping beams
- Equipped with FCU (up to 2W of UV)

“Upgrade of the RILIS at ISOLDE: New lasers and new ion beams”
Dye vs. Ti:Sa lasers

<table>
<thead>
<tr>
<th></th>
<th>Dye</th>
<th>Ti:Sa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Medium</td>
<td>> 10 different dyes</td>
<td>1 Ti:sapphire crystal</td>
</tr>
<tr>
<td>Condition of aggregation</td>
<td>liquid</td>
<td>solid-state</td>
</tr>
<tr>
<td>Tuning range</td>
<td>540 – 850 nm</td>
<td>680 – 980 nm</td>
</tr>
<tr>
<td>Power</td>
<td>up to 15 W</td>
<td>up to 5 W</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>8 ns</td>
<td>50 ns</td>
</tr>
<tr>
<td>Power stability</td>
<td>decrease during operation</td>
<td>stable</td>
</tr>
<tr>
<td>Synchronization</td>
<td>optical delay lines</td>
<td>q-switch, pump power</td>
</tr>
<tr>
<td>Maintenance</td>
<td>renew dye solutions</td>
<td>~ none</td>
</tr>
</tbody>
</table>

Efficiency vs. Wavelength

![Graph showing efficiency vs. wavelength for Dye and Ti:Sa lasers.](image)

![Graph showing power vs. wavelength for Dye and Ti:Sa lasers.](image)
Dual RILIS Concept

- **RILIS Dye Laser System**
 - Nd:YAG
 - Dye 2 (SHG)
 - Dye 1 (THG)
 - Narrowband Dye
 - 10 kHz Master clock
 - Delay generator

- **RILIS Ti:Sa Laser System**
 - Nd:YAG
 - Ti:Sa 1 (SHG/THG/FHG)
 - Ti:Sa 2
 - Ti:Sa 3

- **GPS/HRS Target & Ion Source**

- **LabVIEW based DAQ**

- **Faraday cup**

- **λ – meter**

- **pA – meter**

- **12571.486 cm**
The RILIS Ti:Sa lasers

Pump laser: Nd:YAG (532 nm), Photonics Industries International
Repetition rate: 10 kHz
Pulse length: 180 ns
Power: 60 W

Ti:Sa lasers:
Line width: 5 GHz
Pulse length: 30-50 ns

Wavelength tuning range:
- Fundamental (ω) 690 - 940 nm (5 W)
- 2nd harmonic (2ω) 345 - 470 nm (1 W)
- 3rd harmonic (3ω) 230 - 310 nm (150 mW)
- 4th harmonic (2ω) 205-235 nm (50 mW)

6 resonator mirror sets cover the Ti:Sa range

“A complementary laser system for ISOLDE RILIS”
Third step of RILIS upgrade

 Addition of Ti:Sapphire lasers

Frequency conversion unit
3 steps of RILIS laser upgrade completed

1) Pump laser replacement
2) Dye laser replacement
3) Ti:Sa laser installation

RILIS Dye Laser System
- Nd:YAG
- Master clock
- Delay Generator
- Nd:YAG

RILIS Ti:Sa Laser System
- Ti:Sa 1
- Ti:Sa 2
- Ti:Sa 3

GPS/HRS
Target & Ion Source
Ion beam to Users

λ – meter

Dye 1
Dye 2
Dye 3

SHG
THG
FHG

λ = meter

12571.486 / cm
The complete RILIS Dye + Ti:Sa system

- Sirah dye lasers with 2nd harmonic generation and UV pumping option
- Narrow band dye laser with computer controlled grating and etalon for high resolution spectroscopy or isomer selectivity
- Edgewave Nd:YAG laser for dye pumping or non resonant ionization
- Photonics Industries Nd:YAG pump laser for the Ti:Sa lasers
- 3 Ti:Sa lasers
- Harmonic generation unit for Ti:Sa system

RILIS cabin layout has been redesigned to accommodate the new lasers
100W Nd:YAG laser is available for non-resonant ionization in Ti:Sa only schemes

Mixed schemes

dye and Ti:Sa are exchangeable

Prerequisite for dual operation: **Temporal synchronization** pulses of the two laser systems

Backup solution

Unique for laser ion sources

- **Temporal synchronization**
- **Reduction in down time**
- **New elements**
- **Keep one dye set up for future, use Ti:Sa instead**
<table>
<thead>
<tr>
<th>Element</th>
<th>Setting time*</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Efficiency off-line</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>3 days</td>
<td>λ₁, nm</td>
<td>Dye</td>
<td>λ₂, nm</td>
<td>Dye/YAG</td>
<td>λ₁, nm</td>
<td>Dye/YAG</td>
<td>λ₂, nm</td>
</tr>
<tr>
<td>Mg</td>
<td>2 days</td>
<td>285.2</td>
<td>Rhod B</td>
<td>552.8</td>
<td>YAG</td>
<td>332.1</td>
<td>YAG</td>
<td>532.8</td>
</tr>
<tr>
<td>Al</td>
<td>2 days</td>
<td>309.3</td>
<td>Rhod B</td>
<td>532.1</td>
<td>YAG</td>
<td>309.3</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Ca</td>
<td>2 days</td>
<td>272.2</td>
<td>Rhod B</td>
<td>533.1</td>
<td>YAG</td>
<td>422.7</td>
<td>YAG</td>
<td>345.346</td>
</tr>
<tr>
<td>Se</td>
<td>2 days</td>
<td>327.4</td>
<td>Phenox 9</td>
<td>719.8</td>
<td>Rhod B</td>
<td>327.4</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>S</td>
<td>3 days</td>
<td>279.8</td>
<td>Rhod 9G</td>
<td>628.3</td>
<td>YAG</td>
<td>279.8</td>
<td>YAG</td>
<td>635.8</td>
</tr>
<tr>
<td>Co</td>
<td>2 days</td>
<td>304.4</td>
<td>Rhod B</td>
<td>544.5</td>
<td>YAG</td>
<td>304.4</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Cu</td>
<td>2 days</td>
<td>308.2</td>
<td>Rhod B</td>
<td>308.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>2 days</td>
<td>276.8</td>
<td>Rhod B</td>
<td>532.1</td>
<td>YAG</td>
<td>325.6</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Ga</td>
<td>2 days</td>
<td>287.4</td>
<td>Rhod 9G</td>
<td>719.8</td>
<td>Rhod B</td>
<td>287.4</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Y</td>
<td>2 days</td>
<td>414.3</td>
<td>Phenox 9</td>
<td>510.6</td>
<td>YAG</td>
<td>414.3</td>
<td>YAG</td>
<td>510.6</td>
</tr>
<tr>
<td>Ag</td>
<td>2 days</td>
<td>328.1</td>
<td>Phenox 9</td>
<td>546.6</td>
<td>YAG</td>
<td>328.1</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Cd</td>
<td>2 days</td>
<td>228.8</td>
<td>Phenox 9</td>
<td>643.8</td>
<td>YAG</td>
<td>228.8</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Sn</td>
<td>2 days</td>
<td>305.9</td>
<td>Rhod B</td>
<td>305.9</td>
<td>YAG</td>
<td>305.9</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Sb</td>
<td>2 days</td>
<td>325.9</td>
<td>Phenox 9</td>
<td>645.8</td>
<td>YAG</td>
<td>325.9</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Nd</td>
<td>2 days</td>
<td>286.3</td>
<td>Rhod 9G</td>
<td>623.5</td>
<td>YAG</td>
<td>286.3</td>
<td>YAG</td>
<td>811.4</td>
</tr>
<tr>
<td>Sm</td>
<td>2 days</td>
<td>217.6</td>
<td>Phenox 9</td>
<td>562.0</td>
<td>YAG</td>
<td>217.6</td>
<td>YAG</td>
<td>812.5</td>
</tr>
<tr>
<td>Dy</td>
<td>2 days</td>
<td>588.8</td>
<td>Rhod 9G</td>
<td>596.9</td>
<td>YAG</td>
<td>588.8</td>
<td>YAG</td>
<td>596.9</td>
</tr>
<tr>
<td>Er</td>
<td>2 days</td>
<td>600.4</td>
<td>Rhod B</td>
<td>600.4</td>
<td>YAG</td>
<td>600.4</td>
<td>YAG</td>
<td>676.18</td>
</tr>
<tr>
<td>Tb</td>
<td>2 days</td>
<td>597.6</td>
<td>Phenox 9</td>
<td>551.7</td>
<td>YAG</td>
<td>597.6</td>
<td>YAG</td>
<td>618.3</td>
</tr>
<tr>
<td>Tm</td>
<td>5 days</td>
<td>625.9</td>
<td>DCM</td>
<td>625.9</td>
<td>YAG</td>
<td>607.5</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Yb</td>
<td>5 days</td>
<td>555.6</td>
<td>Phenox 9</td>
<td>581.0</td>
<td>YAG</td>
<td>555.6</td>
<td>YAG</td>
<td>581.0</td>
</tr>
<tr>
<td>Lu</td>
<td>4 days</td>
<td>573.7</td>
<td>Rhod 9G</td>
<td>642.5</td>
<td>DCM</td>
<td>431.9</td>
<td>DCM</td>
<td>903.8</td>
</tr>
<tr>
<td>Ac</td>
<td>5 days</td>
<td>287.6</td>
<td>Coumar 540 A</td>
<td>306.2</td>
<td>DCM</td>
<td>287.6</td>
<td>DCM</td>
<td>673.9</td>
</tr>
<tr>
<td>Hg</td>
<td>3 days</td>
<td>253.7</td>
<td>Styr 9</td>
<td>253.7</td>
<td>YAG</td>
<td>253.7</td>
<td>YAG</td>
<td>626</td>
</tr>
<tr>
<td>Tl</td>
<td>2 days</td>
<td>276.8</td>
<td>Rhod 9G</td>
<td>532.1</td>
<td>YAG</td>
<td>276.8</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Pb</td>
<td>2 days</td>
<td>283.3</td>
<td>Rhod 9G</td>
<td>600.2</td>
<td>YAG</td>
<td>283.3</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Bi</td>
<td>2 days</td>
<td>306.8</td>
<td>Rhod B</td>
<td>306.8</td>
<td>YAG</td>
<td>306.8</td>
<td>YAG</td>
<td>532.1</td>
</tr>
<tr>
<td>Po</td>
<td>4 days</td>
<td>255.8</td>
<td>Styr 9</td>
<td>255.8</td>
<td>YAG</td>
<td>255.8</td>
<td>YAG</td>
<td>843.4</td>
</tr>
<tr>
<td>At</td>
<td>4 days</td>
<td>216.9</td>
<td>Phenox 9</td>
<td>795.4</td>
<td>YAG</td>
<td>216.9</td>
<td>YAG</td>
<td>795.4</td>
</tr>
</tbody>
</table>
Double RILIS tuning curves

- TiSa FHG
- Dye THG
- UV-pumped Dye SHG
- TiSa THG
- TiSa SHG
- UV-pumped Dye Fundamental
- Dye Fundamental
- TiSa fundamental
Example of RILIS setup
Ni: Dye-Dye-TiSa

Higher power from TiSa for AIS transition
Example of RILIS setup
Ca: TiSa-Dye-Dye

Step 1

Step 2

Step 3

Higher power from TiSa for Step 1
Example of RILIS setup
Mg: Dye-Dye-YAG

Step 1
Only Dye scheme, TiSa is setting up for next run (Po)

Step 2

Step 3

285 nm Dye SHG
Mg
532 nm Nd:YAG SHG
553 nm Dye fund
Example of RILIS setup
Po: Dye-TiSa-YAG

Step 1
Step 2
Step 3

Higher power from TiSa for Step 2

256 nm Dye THG
532 nm Nd:YAG SHG
843 nm TiSa fund
Example of RILIS setup
At: Dye-TiSa-YAG

Step 1
Step 2
Higher power from TiSa for Step 2
Step 3
Dye and TiSa exchangeable for Step 1

Dye THG
216 nm

Nd:YAG SHG
532 nm

TiSa fund
795 nm
Example of RILIS setup
Au: TiSa-Dye-Dye

Step 1: Higher power from TiSa for Step 1.
RILIS runs in 2012

ISOLDE GPS SCHEDULE 2012

Start protons 2012

- March
- April
- May
- June
- July

ISOLDE HRS SCHEDULE 2012

Start protons 2012

- April
- May
- June
- July

Schedule Details

- **ISOLDE GPS**
 - Proton beams schedule
 - Specific days for experiments and runs
 - Dates for their respective columns

- **ISOLDE HRS**
 - Proton beams schedule
 - Specific days for experiments and runs
 - Dates for their respective columns
Ion beams of 13 elements were produced with RILIS in 2012

Laser ON time in 2012:
- 3000 h – Expected by end of 2012
- 2916 h – by 1 December

Availability of two complementary laser systems (Dye and Ti:Sapphire) has ensured the increase of RILIS beam time in 2011-2012

Beam	Sm 2 runs	Ca 2 runs	Cd 2 runs	At 2 runs	Au 2 runs	Be 3 runs	Dy 4 runs	Mg 2 runs	Po 2 runs	Ag 2 runs	Zn	Cu	Mn
------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------			
Planned	208	272	192	300	172	446	88	296	206	96	198	112	148
Real	212	359	253	345	262	278	111	378	206	113	124	69	208
The Dual Etalon Narrow Linewidth TiSa

Addition of a thick etalon to the TiSa cavity
Remote dual etalon control, automatic optimization routine and feedback based frequency stabilization

Reduction of line-width from >5 GHz → <1GHz
Gold Isotopes

178Au HF spectrum 5830 keV
178Au HF spectrum 5915 keV
178Au HF spectrum 5970 keV

→ 1st transition is difficult with dye laser (UV pump beam required)
→ NB-TiSa was therefore advantageous: scanning stability with 3rd harmonic was demonstrated
→ MR-TOF, windmill and FC were used
Beam time was extremely limited!
Astatine Isotopes: scans on both steps

Extensive Ionization scheme development was required
RILIS ion beams

Ion beams of 31 elements are produced at ISOLDE with RILIS

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Li</td>
<td>Be</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
</tr>
<tr>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
</tr>
<tr>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Ce</td>
<td>Pr</td>
</tr>
<tr>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>Th</td>
<td>Pa</td>
</tr>
<tr>
<td>31 elements ionized with RILIS</td>
<td></td>
</tr>
</tbody>
</table>

27 ionization scheme tested (dye or Ti:Sa)

<table>
<thead>
<tr>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 RILIS ionization feasible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recent new beams: Sm, Pr, At, Ca
RILIS in action
RILIS in action
Outlook, future developments

- Automated protection and remote monitoring of RILIS installation
- Improved RILIS schemes for the Dual RILIS system
- Extension of RILIS cabin
- Installation of a reference atomic beam unit at RILIS
- Fully motorized TiSa – automatic tuning/optimization
- High beam quality laser for non resonant ionization
- Optimizing the LIST and other means of surface ion suppression
Acknowledgements

Bruce Marsh, Sebastian Rothe, Marica Sjödin, Daniel Fink
CERN: STI Group of EN department

Klaus Wendt, Ralf Rossel
University of Mainz, Working group LARISSA Mainz, Germany

Nobuaki Imai
Visiting scientist at CERN

Dmitri Fedorov, Maxim Seliverstov
Petersburg Nuclear Physics Institute, Gatchina, Russia

Lars-Eric Berg, Olli Launila
KTH – Royal Institute of Technology Stockholm, Sweden

Knut and Alice Wallenberg Foundation
The main topics of the Workshop are following:

- Lasers and photocathodes for production of high brightness electron beams
- RF and DC photoinjectors
- Hot cavity and gas cell ion sources for radioactive ion beam facilities
- Laser systems for highly efficient resonance ionization
- Optimizing selectivity for resonance ionization laser ion sources
- In-source spectroscopy of rare nuclides