

KEK 理論センター研究会 『ハドロン・原子核物理の理論研究最前線 2017』

2017年11月20日~22日於KEK

パリティ混合モデルによる ${}^{12}_{\Lambda}B \ge {}^{10}_{\Lambda}Be の構造分析および生成断面積$

梅谷 篤史(日本工業大学)

元場 俊雄(大阪電気通信大学)

糸永 一憲 (岐阜大学)

最近の p 殻 ∧ ハイパー核の生成実験 (1)

 γ 線分光

from H. Tamura et al., NPA914 (2013).

最近の p 殻 ∧ ハイパー核の生成実験 (1)

 γ 線分光

PRC 65 (2002) 034607

from H. Tamura *et al.*, NPA914 (2013).

最近の p 殻 ∧ ハイパー核の生成実験 (2)

JLab Hall C, E05-115 L. Tang *et al.*, PRC90, 034320 (2014) remarkably high resolution data

Theoretical calculation T. Motoba *et al.*, PTPS185, 224 (2010) DWIA 計算 従来の *p* 殻配位で構成されたコア核 Λ 粒子は *s* 軌道または *p* 軌道

DWIA 計算で予言された major peaks と subpeaks が実験で確認できる しかし $E_x \simeq 9$ MeV の励起エネルギーの領域に extra strengths が見られる → コア核に対する模型空間の拡張が必要

最近の p 殻 ∧ ハイパー核の生成実験 (2)

(π⁺, K⁺) 反応 (H. Hotchi *et al.*, PRC64, 044302 (2001)) でも
 (γ, K⁺) 反応と同じエネルギーの領域に extra strengths が見られる

最近の p 殻 ∧ ハイパー核の生成実験 (2)

(π⁺, K⁺) 反応 (H. Hotchi *et al.*, PRC64, 044302 (2001)) でも
 (γ, K⁺) 反応と同じエネルギーの領域に extra strengths が見られる

最近の p 殻 Λ ハイパー核の生成実験 (3)

¹⁰B (γ, K^+) ¹⁰_{\Lambda}Be 反応

First theoretical prediction

T. Motoba, M. Sotona, K. Itonaga, PTPS117, 123 (1994).

Recent and first experiment

T. Gogami *et al.*, PRC93, 034314 (2006).

赤丸でかこった部分に extra peak が見られる

最近の p 殻 ∧ ハイパー核の生成実験 (4)

[32] shell model T. Motoba, M. Sotona, K. Itonaga, PTPS117, 123 (1994). T. Motoba, P. Bydzovsky, M. Sotona, K. Itonaga, PTPS185 (2010). [33] shell model D.J. Millener, NPA881, 298 (2012). [23] cluster model E. Hiyama, Y. Yamamoto, PTP128, 105 (2012). [34] AMD model M. Isaka *et al.*, Few-Body Syst. 54, 1219 (2013).

T. Gogami et al., PRC93, 034314 (2016).

殻模型計算における模型空間の拡張 (¹²_∧B の場合)

¹¹B コアに対して

- (A) 従来の殻模型空間 J_{core}^{-} $(0s)^4 (0p)^7$ (0p-0h)
- (B) 拡張した殻模型空間 J_{core}^+ $(0s)^3 (0p)^8$ \oplus $(0s)^4 (0p)^6 (sd)^1$ (1p-1h)

¹²_AB ハイパー核に対する従来の模型空間 (a) $J_{core}^{-} \otimes 0s^{A} \Rightarrow {}_{\Lambda}^{12}B(J^{-})$ (b) J_{core}^{-}

$${}^{2}_{\mathcal{A}}\mathbf{B}(J^{-})$$
 (**b**) $J^{-}_{\text{core}} \otimes 0p^{\Lambda} \Rightarrow {}^{12}_{\Lambda}\mathbf{B}(J^{+})$

拡張 (1) 1p-1h (1ħω) のコア励起を考慮

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{-})$$
 (b) $J_{\text{core}}^{-} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{+})$
(c) $J_{\text{core}}^{+} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{+})$ (d) $J_{\text{core}}^{+} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{-})$

拡張 (2) AN 相互作用による配位混合

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{-})$$

(b) $J_{\text{core}}^{-} \otimes 0p^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{+})$

今までの殻模型計算ではコア核は natural parity のみ ${}^{12}_{\Lambda}B(J^-)$ は Λ が 0s にいる状態, ${}^{12}_{\Lambda}B(J^+)$ は Λ が 0p にいる状態

しかし

 $\Lambda(0s), \Lambda(0p)$ のエネルギー差と¹¹B $(J_{core}^{-}), {}^{11}B(J_{core}^{+})$ のエネルギー差は同程度 コア核が unnatural parity の状態に励起したものも考えられる ΛN 相互作用によってコア核が natural parity の状態と コア核が unnatural parity に励起した状態とが混合する

標的核¹²Cに対する模型空間の拡張

標的核¹²C に対して模型空間を 2*p*-2*h* (2*ħ*ω) まで拡張¹²C

→ 様々な配位を通して ${}^{12}_{\Lambda}B$ が生成される

殻模型ハミルトニアン

NN 相互作用	
$\langle p^2 V p^2 \rangle$	Cohen-Kurath (6–16) TBME S. Cohen, D. Kurath, NP73, 1 (1965)
$\langle (sd)^2 V (sd)^2 \rangle$	modified Kuo-Brown G-matrix T. T. S. Kuo, G. E. Brown, NP85, 40 (1966)
$\langle p(sd) V p(sd)\rangle$	Millener-Kurath D. J. Millener, D. Kurath, NPA255, 315 (1975)
$\langle p^2 V (sd)^2 \rangle$	modified Kuo-Brown G-matrix T. T. S. Kuo, G. E. Brown, NP85, 40 (1966)
Others	Anantaraman-Toki-Bertsch G-matrix N. Anantaraman, H. Toki, G. F. Bertsch, NPA398, 269 (1983)
AN 相互作用	
$\langle N\Lambda V N\Lambda \rangle$	Nijmegen NSC97e Th. A. Rijken, V. G. J. Stoks, Y. Yamamoto, PRC59, 21 (1999)
1 粒子エネルギー	
	low-lying energy levels の実験値を再現するように調整

結果: ${}^{11}B \ge {}^{12}A B$ のエネルギーレベル

KEK

結果: ¹¹B と ${}^{12}_{\Lambda}$ B のエネルギーレベル

結果: Pickup 反応 (¹²C から ¹¹B) の Spectroscopic factor

KEK

Nov. 22, 2017

結果:¹²C (*π*₊, *K*⁺) ¹²_AB 反応の生成断面積

コアのパリティ混合を起こす ΛN 相互作用

$\frac{10}{\Lambda}$ Be の場合

core の parity-mixing を考慮した配位

$${}^{10}_{\Lambda} \operatorname{Be}(J^{-}) = \sum \left[{}^{9}_{\Lambda} \operatorname{Be}(J^{-}_{c}) \otimes s_{\Lambda} \right] + \sum \left[{}^{9}_{\Lambda} \operatorname{Be}(J^{+}_{c}) \otimes p_{\Lambda} \right],$$

$${}^{10}_{\Lambda} \operatorname{Be}(J^{+}) = \sum \left[{}^{9}_{\Lambda} \operatorname{Be}(J^{-}_{c}) \otimes p_{\Lambda} \right] + \sum \left[{}^{9}_{\Lambda} \operatorname{Be}(J^{+}_{c}) \otimes s_{\Lambda} \right],$$

標的核の配位

$${}^{10}\mathrm{B}(J_{\mathrm{g.s.}}^+) = \sum \left[{}^{9}\mathrm{Be}(J_{\mathrm{c}}^-) \otimes j_p^N\right] + \sum \left[{}^{9}\mathrm{Be}(J_{\mathrm{c}}^+) \otimes j_{s,sd}^N\right]$$

結果: ${}^{9}Be > {}^{10}_{\Lambda}Be$ のエネルギーレベル

結果: ${}^{9}Be > {}^{10}_{\Lambda}Be$ のエネルギーレベル

KEK

まとめと今後

Unnatural parity の状態に励起したコア核を記述できるように拡張 した殻模型空間で Λ ハイパー核 ${}^{12}_{\Lambda}B$ と ${}^{10}_{\Lambda}Be$ の生成断面積を計算した

- Unnatural parity の状態に励起したコア核を持つ状態が Λ が *p* 殻の軌道に入った状態の周辺に現れる
- 拡張した模型空間に対応した NN, AN 相互作用の検討を行う
- 新たに現れた状態についてどのような成分を持つのか調べる
- ¹¹_ΛBe に対しても計算を行う