# QCD和則による核物質中のAcの解析

# 東京工業大学 大谷圭介

#### 共同研究者: 荒木賢志, 岡真

K. Ohtani, K. Araki and M. Oka, arXiv:1704.04902 [hep-ph] (to be published in PRC)

Hadrons in nuclear matter:





In vacuum

In nucleus

- Interaction between the prove hadron and nucleon
- The relation between the mass of the prove hadron and the partial restoration of chiral symmetry

Many studies about



We investigate the mass modification of  $\Lambda_c$  baryon in nuclear matter.



 $\Lambda_c$  baryon

- Interaction between  $\Lambda_c$  and nucleon
- The relation between the mass of  $\Lambda_c$  and the partial restoration of the chiral symmetry



- Interaction between  $\Lambda_c$  and nucleon
- The relation between the mass of  $\Lambda_c$  and the partial restoration of the chiral symmetry

New points in  $\Lambda_c$  baryon:

The di-quark properties may be investigated through the  $\Lambda_{\rm c}$  baryon analyses



• Interaction between  $\Lambda_c$  and nucleon

- The relation between the mass of  $\Lambda_c$  and the partial restoration of the chiral symmetry
- The relation between the di-quark and partial restoration of chiral symmetry.

We investigate  $\Lambda_{\rm C}$  baryon in nuclear matter by using QCD sum rule.



Z. G. Wang



 $2.284^{+0.049}_{-0.078}$ 

 $0.022 \pm 0.002 | 0.021 \pm 0.001$ 

 $2.335^{+0.045}_{-0.072}$ 

Results in Vacuum Results in nuclear matter

51

 $34 \pm 1$ 

Z. G. Wang



- There are large discrepancies in the results.
- The equations of OPE do not consist with each other.

**Results in Vacuum Results in nuclear matter** 

51

Z. G. Wang



- There are large discrepancies in the results.
- The equations of OPE do not consist with each other.

**Results in Vacuum** Results in nuclear matter

51

We improve the  $\Lambda_{\rm C}$  QCD sum rule and carry out the analyses.

**Recalculation of OPE**  $\alpha_{s}$  corrections (NLO) S. Groote, et al., Eur. Phys. J. C58, 355 (2008) higher order contributions of condensates Parity projection

## Λ<sub>c</sub> QCD sum rules



## $\Lambda_c$ QCD sum rules

Correlation function: 
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0\rangle d^4x$$
  
Parity projected  $J_{\Lambda_c} = \epsilon^{abc}(u^{Ta}C\gamma_5 d^b)c^c$   
QCD sum rule  $J_{\Lambda_c} = \epsilon^{abc}(u^{Ta}C\gamma_5 d^b)c^c$   
Gaussian sum rule:  $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right)\rho(q_0)dq_0$ 

## $\Lambda_c$ QCD sum rules

Correlation function: 
$$\Pi(q) = i \int e^{iqx} \langle 0|T[J_{\Lambda_c}(x)\overline{J}_{\Lambda_c}(0)]|0\rangle d^4x$$
  
Parity projected  
QCD sum rule  
Gaussian sum rule:  $G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$ 



 $m_{\Lambda_c} q_{th}$ 

## Λ<sub>c</sub> QCD sum rules



## Λ<sub>c</sub> QCD sum rules





 $\overline{q}q$ 

- Large contribution of four quark condensate
- Small contribution of two quark condensate

## OPE of $\Lambda_c$ correlation function

Gaussian sum rule:  $\underline{G_{OPE}(\tau)} = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$ 

— Suppression of contribution of chiral condensate: —

Diagram:

 $\Lambda_{\rm c} \text{ interpolating operator: } J_{\Lambda_c} = \epsilon^{abc} (u^{Ta} C \gamma_5 d^b) c^c = \epsilon^{abc} (-u_L^T C \gamma_5 d_L + u_R^T C \gamma_5 d_R) c^c$ 

– The property of  $~~J_{\Lambda_Q}$ –

The right handed spinor of u quark is paired with left handed one.

 $\langle \overline{u}u \rangle$ 

×---×

The right handed spinor of d quark is also paired with left handed one.

 $m_d$ 

The contributions appear as  $m_q\langle \overline{q}q \rangle$  and are numerically small.

**OPE of**  $\Lambda_{c}$  **correlation function**  $\underline{G_{OPE}(\tau)} = \int_{0}^{\infty} \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_{0}^{2} - m_{c}^{2})^{2}}{4\tau}\right) \rho(q_{0}) dq_{0}$ 

Behavior of  $G_{OPE}(\tau)$ :



 $\Lambda_c$  feels in-medium modification from the four quark condensate.

**OPE of**  $\Lambda_{c}$  **correlation function**  $\underline{G_{OPE}(\tau)} = \int_{0}^{\infty} \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_{0}^{2} - m_{c}^{2})^{2}}{4\tau}\right) \rho(q_{0}) dq_{0}$ 

Behavior of  $G_{OPE}(\tau)$ :



#### Structure of the four quark condensate

The structure of the four quark condensate " $\langle \overline{q}q\overline{q}q\rangle_m$ " in  $\Lambda_c$  interpolating operator:

$$\begin{split} ``\langle \overline{q}q\overline{q}q\rangle_{m}" &= \langle (\epsilon^{abc}u^{a}C\gamma_{5}d^{b}) \cdot (\epsilon^{efc}\overline{d}^{f}\gamma_{5}C\overline{u}^{e})\rangle_{m} \\ &= -\frac{1}{4} \Big[ \langle \overline{d}^{f}d^{b}\overline{u}^{e}u^{a}\rangle_{m} + \langle \overline{d}^{f}\gamma_{5}d^{b}\overline{u}^{e}\gamma_{5}u^{a}\rangle_{m} \\ &- \frac{1}{2} \langle \overline{d}^{f}\sigma_{\mu\nu}d^{b}\overline{u}^{e}\sigma^{\mu\nu}u^{a}\rangle_{m} + \langle \overline{d}^{f}\gamma_{\mu}d^{b}\overline{u}^{e}\gamma^{\mu}u^{a}\rangle_{m} \\ &+ \langle \overline{d}^{f}\gamma_{5}\gamma_{\mu}d^{b}\overline{u}^{e}\gamma_{5}\gamma^{\mu}u^{a}\rangle_{m} \Big] \epsilon^{abc} \epsilon^{efc}. \end{split}$$

decomposed into the independent four-quark condensates.

#### Structure of the four quark condensate

The structure of the four quark condensate " $\langle \overline{q}q\overline{q}q \rangle_m$ " in  $\Lambda_c$  interpolating operator:

$$\label{eq:approx_m} \begin{split} ``\langle \overline{q}q\overline{q}q\rangle_m" &= \langle (\epsilon^{abc}u^a C\gamma_5 d^b) \cdot (\epsilon^{efc}\overline{d}^f\gamma_5 C\overline{u}^e)\rangle_m \\ &= -\frac{1}{4} \big[ \langle \overline{d}^f d^b \overline{u}^e u^a \rangle_m + \langle \overline{d}^f\gamma_5 d^b \overline{u}^e \gamma_5 u^a \rangle_m \\ &- \frac{1}{2} \langle \overline{d}^f \sigma_{\mu\nu} d^b \overline{u}^e \sigma^{\mu\nu} u^a \rangle_m + \langle \overline{d}^f \gamma_\mu d^b \overline{u}^e \gamma^\mu u^a \rangle_m \\ &+ \langle \overline{d}^f \gamma_5 \gamma_\mu d^b \overline{u}^e \gamma_5 \gamma^\mu u^a \rangle_m \big] \epsilon^{abc} \epsilon^{efc}. \end{split}$$

decomposed into the independent four-quark condensates.

• The four-quark condensate is singlet under the chiral transformation.

Its in-medium modification is not directly related to the partial restoration of chiral symmetry.

#### Density dependence of the four quark condensate

Two approaches for evaluating in-medium four quark condensate

"

Factorization hypothesis: (Justified in large N<sub>c</sub> limit)

$$\begin{split} \langle \overline{q}q\overline{q}q\rangle_m &= -\frac{1}{6} \left( \langle \overline{q}q \rangle_m^2 + \langle q^{\dagger}q \rangle_m^2 \right) \\ &= -\frac{1}{6} \left( \langle \overline{q}q \rangle_0^2 + \rho \frac{\sigma_N}{m_q} \langle \overline{q}q \rangle_0 + \left(\frac{\sigma_N^2}{4m_q^2} + \frac{9}{4}\right) \rho^2 \right) \end{split}$$

Perturbative chiral quark model (PCQM):

E.G. Drukarev, et al., Phys. Rev. D 68 054021 (2003).
R. Thomas, T. Hilger, and B. Kampfer, Nucl. Phys. A795, 19 (2007).

$$\langle \overline{q}q\overline{q}q\rangle_m = -\frac{1}{6}\langle \overline{q}q\rangle_0^2 - \rho \frac{1}{4} 0.935 \langle \overline{q}q\rangle_0 + \mathcal{O}(\rho^2)$$

Using the two methods, we investigate the property of  $\Lambda_c$  baryon in nuclear matter.



The density dependence of the mass of  $\Lambda_c$ 



The density dependence of the mass of  $\Lambda_c$ 

#### Which cases are more realistic?



The density dependence of the mass of  $\Lambda_c$ 



The density dependence of the mass of  $\Lambda$ 



PCQM type (Weak density dependence of the four quark condensate) is more realistic



PCQM type (Weak density dependence of the four quark condensate) is more realistic

The density dependence of the mass of  $\Lambda_c$ 

In the case of the PCQM type,

 $\Lambda_c$  in nuclear matter feels weak attraction.

At normal nuclear matter density, the mass decreases about 20 MeV.

#### Summary

- •We construct the parity projected  $\Lambda_c$  QCD sum rule and investigate the density dependence of the mass of  $\Lambda_c$ .
- •The four quark condensate is important in the  $\Lambda_c$  QCD sum rule.
- •Weak density dependence of the four quark condensate is more realistic
- •In the case of the weak density dependence of the four quark condensate, the  $\Lambda_c$  baryon feels weak attraction in nuclear matter.

#### Future plan

•We will investigate the  $\Sigma_c$  baryon and  $\Lambda_c$  excited states.

$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$



The positive parity states strongly couple to the interpolating operator  $J_{\Lambda_Q}$  .

$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$

Density dependence of the  $G_{OPE}( au)$ 



$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$

Density dependence of the  $G_{OPE}( au)$ 



$$G_{OPE}(\tau) = \int_0^\infty \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right) \rho(q_0) dq_0$$

Density dependence of the  $G_{OPE}( au)$ 



$$\Pi_{old}(q) = i \int \theta(x_0) \langle T\{j(x)\overline{j}(0)\} \rangle e^{iqx} dx = m \Pi_{old}^m(q_0, |\vec{q}|) + \not q \Pi_{old}^q(q_0, |\vec{q}|) + \not q \Pi_{old}^u(q_0, |\vec{q}|).$$

$$\rho_{old}^i(q_0, |\vec{q}|) \equiv \frac{1}{\pi} Im[\Pi_{old}^i(q^2)] \quad (i = m, q, u)$$

$$\rho_{old OPE}^{+} = q_0 \rho_{old}^q + m_Q \rho_{old}^m + u_0 \rho_{old}^u$$

$$\int_{-\infty}^{\infty} \rho_{old \ OPE}^{+}(q_0) W(q_0) dq_0 = \int_{0}^{\infty} \rho_{hadron}^{+}(q_0) W(q_0) dq_0$$

$$W(q_0) = \frac{1}{\sqrt{4\pi\tau}} \exp\left(-\frac{(q_0^2 - m_c^2)^2}{4\tau}\right)$$

$$\begin{split} q_0 \ \rho_{old}^q(q^2)|_{\vec{q}=0} &= \rho_{old}^{q \ pert}(q_0) + \rho_{old}^{q \ cond}(q_0) \\ q_0 \rho_{old}^{q \ pert}(q_0) &= \frac{q_0^5}{128\pi^4} \left\{ \rho_0^q(s) \left( 1 + \frac{\alpha_s}{\pi} \ln \frac{\mu^2}{m^2} \right) + \frac{\alpha_s}{\pi} \rho_1^q(s) \right\} \theta(q_0 - m), \\ \rho_0^q(s) &= \frac{1}{4} - 2z + 2z^3 - \frac{1}{4}z^4 - 3z^2 \ln z, \\ \rho_1^q(s) &= \frac{71}{48} - \frac{565}{36}z - \frac{7}{8}z^2 + \frac{625}{36}z^3 - \frac{109}{48}z^4 \\ &- \left( \frac{49}{36} - \frac{116}{9}z + \frac{116}{9}z^3 - \frac{49}{36}z^4 \right) \ln(1 - z) \\ &+ \left( \frac{1}{4} - \frac{17}{3}z - 11z^2 + \frac{113}{9}z^3 - \frac{49}{36}z^4 \right) \ln z \\ &+ \frac{2}{3} \left( 1 - 8z + 8z^3 - z^4 \right) \left( \text{Li}_2(z) + \frac{1}{2}\ln(1 - z) \ln z \right) \\ &- \frac{1}{3}z^2 \left( 54 + 8z - z^2 \right) \left( \text{Li}_2(z) - \zeta(2) + \frac{1}{2}\ln^2 z \right) \\ &- 12z^2 \left( \text{Li}_3(z) - \zeta(3) - \frac{1}{3}\text{Li}_2(z)\ln(z) \right) \end{split}$$

$$q_0 \ \rho_{old}^q(q^2)|_{\vec{q}=0} = \rho_{old}^{q \ pert}(q_0) + \rho_{old}^{q \ cond}(q_0)$$

 $\Lambda = \frac{m_Q^2}{q_0^2}$ 

$$m \ \rho_{old}^m(q^2)|_{\vec{q}=0} = \rho_{old}^m \ pert(q_0) + \rho_{old}^m \ cond(q_0)$$

$$\begin{split} \rho_{old}^{m \ pert}(q_0) &= \frac{mq_0^4}{128\pi^4} \left\{ \rho_0^m(s) \left( 1 + \frac{\alpha_s}{\pi} \ln \frac{\mu^2}{m^2} \right) + \frac{\alpha_s}{\pi} \rho_1^m(s) \right\} \theta(q_0 - m), \\ \rho_0^m(s) &= 1 + 9z - 9z^2 - z^3 + 6z(1 + z) \ln z \\ \rho_1^m(s) &= 9 + \frac{665}{9}z - \frac{665}{9}z^2 - 9z^3 \\ &- \left( \frac{58}{9} + 42z - 42z^2 - \frac{58}{9}z^3 \right) \ln(1 - z) \\ &+ \left( 2 + \frac{154}{3}z - \frac{22}{3}z^2 - \frac{58}{9}z^3 \right) \ln z \\ &+ \frac{8}{3} \left( 1 + 9z - 9z^2 - z^3 \right) \left( \text{Li}_2(z) + \frac{1}{2}\ln(1 - z) \ln z \right) \\ &+ z \left( 24 + 36z + \frac{4}{3}z^2 \right) \left( \text{Li}_2(z) - \zeta(2) + \frac{1}{2}\ln^2 z \right) \\ &+ 24z(1 + z) \left( \text{Li}_3(z) - \zeta(3) - \frac{1}{3}\text{Li}_2(z) \ln z \right) \\ z &= m^2/s \ b^{\gamma \gamma} > s = q_0^2 \end{split}$$

$$\begin{split} m \ \rho_{old}^{m} \left(q^{2}\right) \Big|_{\vec{q}=0} &= \rho_{old}^{m \ pert} \left(q_{0}\right) + \rho_{old}^{m \ cond} \left(q_{0}\right) \\ m \rho_{sdd}^{m \ cond}(q_{0}) &= -\frac{m_{Q}}{768\pi^{2}} \left(\frac{\alpha_{s}GG}{\pi}\right) \int_{\Lambda}^{1} d\alpha \frac{(1-\alpha)^{2}}{\alpha} \frac{m_{Q}}{\sqrt{\alpha}} \delta(q_{0} - \frac{m_{Q}}{\sqrt{\alpha}}) \\ &+ \frac{m_{Q}}{192\pi^{2}} \left(\frac{\alpha_{s}GG}{\pi}\right) \int_{\Lambda}^{1} d\alpha \left(q_{0} - m_{Q}\right) \\ &+ \frac{m_{Q}}{128\pi^{2}} \left(\frac{\alpha_{s}GG}{\pi}\right) \int_{\Lambda}^{1} d\alpha \theta(q_{0} - m_{Q}) \\ &- \frac{m_{Q} \langle q^{\dagger} i D_{0} q \rangle_{\rho_{N}}}{3\pi^{2}} \int_{\Lambda}^{1} (1-\alpha) \left[ \theta(q_{0} - m_{Q}) + q_{0} \delta(q_{0} - \frac{m_{Q}}{\sqrt{\alpha}}) \right] d\alpha \\ &+ \frac{\langle \bar{q} q \rangle^{2} + \langle q^{\dagger} q \rangle^{2}}{12} \delta(q_{0} - m_{Q}) \\ &+ \frac{12^{3} \cdot 3}{3} \langle \bar{q} g \sigma G q \rangle \langle \bar{q} q \rangle \\ &\times \left( \frac{1}{8} \left( \delta'' \left(q_{0} - m_{Q}\right) - \frac{3}{m_{Q}} \delta'(q_{0} - m_{Q}) + \frac{3}{m_{Q}^{2}} \delta(q_{0} - m_{Q}) \right) \right) \\ &- q_{0} \left[ m_{Q} \frac{\langle q^{\dagger} q \rangle_{\rho_{N}}}{4\pi^{2}} \int_{\Lambda}^{1} (1-\alpha) d\alpha \theta(q_{0} - m_{Q}) \\ &- \frac{1}{4\pi^{2}} \left( \langle \langle q^{\dagger} i D_{0} i D_{0} q \rangle_{\rho_{N}} + \frac{1}{12} \langle q^{\dagger} g_{s} \sigma G q \rangle_{\rho_{N}} \right) \int_{\Lambda}^{1} \sqrt{\alpha} \delta(q_{0} - \frac{m_{Q}}{\sqrt{\alpha}}) d\alpha \\ &+ \frac{1}{4\pi^{2}} \left( \langle q^{\dagger} i D_{0} i D_{0} q \rangle_{\rho_{N}} + \frac{1}{12} \langle q^{\dagger} g_{s} \sigma G q \rangle_{\rho_{N}} \right) \\ &\times \int_{\Lambda}^{1} (1-\alpha) \left( 4\sqrt{\alpha} \delta(q_{0} - \frac{m_{Q}}{\sqrt{\alpha}} + m_{Q} \delta'(q_{0} - \frac{m_{Q}}{\sqrt{\alpha}}) \right) d\alpha \\ &+ \frac{\langle q^{\dagger} g_{s} \sigma G q \rangle}{96\pi^{2}} \int_{\Lambda}^{1} \sqrt{\alpha} \delta(q_{0} - \frac{m_{Q}}{\sqrt{\alpha}}) d\alpha \right] \qquad \Lambda = \frac{m_{Q}^{2}}{q_{0}^{2}} \end{split}$$

$$\begin{split} \rho_{old}^{u}(q_{0}, |\vec{q}|)|_{\vec{q}=0} &= -\frac{\langle q^{\dagger}q\rangle_{\rho_{N}}}{8\pi^{2}} \int_{\Lambda}^{1} \alpha (1-\alpha)^{2} (q_{0}^{2} - \frac{m_{Q}^{2}}{\alpha}) d\alpha \theta(q_{0} - m_{Q}) \\ &+ \frac{1}{4\pi^{2}} \left( \langle \langle q^{\dagger}iD_{0}iD_{0}q\rangle_{\rho_{N}} + \frac{1}{12} \langle q^{\dagger}g_{s}\sigma Gq\rangle_{\rho_{N}} \right) \int_{\Lambda}^{1} \alpha d\alpha \theta(q_{0} - m_{Q}) \\ &- \frac{3}{4\pi^{2}} \left( \langle q^{\dagger}iD_{0}iD_{0}q\rangle_{\rho_{N}} + \frac{1}{12} \langle q^{\dagger}g_{s}\sigma Gq\rangle_{\rho_{N}} \right) \\ &\times \int_{\Lambda}^{1} \alpha (1-\alpha) \left[ \theta(q_{0} - m_{Q}) + q_{0}\delta(q_{0} - \frac{m_{Q}}{\sqrt{\alpha}}) \right] d\alpha \\ &+ \frac{\langle q^{\dagger}g_{s}\sigma Gq\rangle}{48\pi^{2}} \int_{\Lambda}^{1} \alpha d\alpha \theta(q_{0} - m_{Q}) \\ &- q_{0} \left[ -\frac{2\langle q^{\dagger}iD_{0}q\rangle_{\rho_{N}}}{3\pi^{2}} \int_{\Lambda}^{1} \alpha (1-\alpha) d\alpha \theta(q_{0} - m_{Q}) \right] \end{split}$$

 $\Lambda = \frac{m_Q^2}{q_0^2}$ 

Negative parity  $G_{OPE}(\tau)$ 

$$\rho_{old \ OPE}^{+} = q_0 \rho_{old}^q + m_Q \rho_{old}^m + u_0 \rho_{old}^u$$
$$\rho_{old \ OPE}^{-} = q_0 \rho_{old}^q - m_Q \rho_{old}^m + u_0 \rho_{old}^u$$
$$G_{OPE}(\tau) = \int_{-\infty}^{\infty} \rho_{old \ OPE}(q_0) W(q_0) dq_0$$



 $\Lambda_Q$  interpolating operator:

$$J^{1}_{\Lambda_{Q}} = \epsilon^{abc} (q^{Ta} C q^{b}) \gamma_{5} Q^{c},$$
  

$$J^{2}_{\Lambda_{Q}} = \epsilon^{abc} (q^{Ta} C \gamma_{5} q^{b}) Q^{c},$$
  

$$J^{3}_{\Lambda_{Q}} = \epsilon^{abc} (q^{Ta} C \gamma_{5} \gamma_{\mu} q^{b}) \gamma_{\mu} Q^{c}$$

$$\Lambda_{c}$$
 propagator:  $\frac{\not{q} - \not{n} \Sigma_{v} + M^{*}_{\Lambda_{c}}}{(q_{0} - E_{\Lambda_{c}} + i\epsilon)(q_{0} + \overline{E}_{\Lambda_{c}} - i\epsilon)}$ 





150 50 5700 (b)  $\stackrel{(c)}{\Sigma^v_{\Lambda_b}}$ (a) \*  $|E_{\Lambda_b}|$  $M_{\Lambda_b}^{-}-M_{\Lambda_b}^{-}$ 100 50 0 5650 0 -50 -50 5600 0.5 0.5 0 0 1 0.5 1 0 1  $\rho/\rho_N$  $\rho/\rho_N$  $\rho/\rho_N$ 

Results of  $\Lambda_{\rm b}$  baryon