Charmed hadron molecules --what we have learnt from the study of the X(3872) properties--

Makoto Takizawa (Showa Pharmaceutical University) Kiyotaka Shimizu (Sophia University) Sachiko Takeuchi (Japan College of Social Work)

KEK theory center workshop on Hadron physics with high-momentum hadron beams at J-PARC, March 13-16, 2015, KEK, Japan

Outline

- X(3872): experimental results
- Charmonium-molecule hybrid model of X(3872)
- Summary of X(3872)
- Consideration about other hadronic molecules: $Z_b^+(10610)$, $Z_b^+(10650)$, $Z_c^+(3900)$
- At J-PARC

X(3872)

• First observed by B decay

X(3872) should be Charmonium-like state.

 $J/\psi \pi^{n}$ Exp: S.K.Choi et al. [Belle] PRL91, 262001 (2003) B.Aubert et al. [BaBar] PRD71, 071103 (2005)

$Br(X \rightarrow D^{0}\overline{D}^{*0})/Br(X \rightarrow J/\psi\pi^{2})$ = 8.92±2.42, 19.9±8.05 (calc from papers) Belle BABAR

D⁰D^{*0} exp T.Aushev et al. [Belle] PRD81, 031103 (2010) B.Aubert et al. [BaBar] PRD77, 011102 (2008)

Formation process of X(3872)

- X(3872) from
 - $-B^+$ decay
 - $-B^0$ decay
 - -pp^{bar} collision

pp exp

D.Acosta et al. [CDF] PRL93, 072001 (2004) V.M.Abazov et al. [D0] PRL93, 162002 (2004)

- $Br(pp^{bar} \rightarrow X)/Br(pp^{bar} \rightarrow \psi(2S)) >$ 0.046
- -pp collision

C.Bignamini et al. PRL103, 162001 (2009)

• **J**^{PC}=1⁺⁺

pp exp R.Aaij et al. [LHCb] EPJC72, 1972 (2012)

Decay process of X(3872)

- X(3872) decays into
 - $-J/\psi \pi\pi$ [Belle][BaBar][CDF][D0][CMS]
 - $J/\psi \pi^3$ [BaBar]([Belle] not published)
 - $D_0 D_{*0}$ [Belle][BaBar]
 - $-J/\psi\gamma$ [Belle][BaBar][LHCb]

 - $-\psi(2S)\gamma$ [BaBar][LHCb]([Belle] not seen)

X(3872) facts

4 two-meson thresholds are nearby.

- J^{PC}=1⁺⁺
- X(3872) (ucūc, dcdc) thresholds
 - D[±]D^{*∓} 3879.87±0.12 MeV
 - $-J/\psi\omega$ 3879.57±0.12 MeV
 - J/ψρ 3872.18±0.25 MeV
 - $-D^0\overline{D}^{*0}$ 3871.80±0.12 MeV (Lowest threshold)

Mass and Decay to $J/\psi \pi^n$

Binding energy • X(3872) decays into is 0.11 MeV. $\square J/\psi$ ππ isovector 3871.69±0.17 MeV mass width < 1.2 MeVvery narrow width $\triangleright J/\psi \pi^3$ isoscalar ► Br(X \rightarrow J/ ψ \pi³)/Br(X \rightarrow J/ ψ \pi²) = $1.0\pm0.4\pm0.3$, 0.8 ± 0.3 Belle **BABAR** A large isospin symmetry breaking

Decay to $D^0 \overline{D^{*0}}$

- X(3872) decays into D⁰D
 *⁰
 - $Pmass 3872.9 + 0.6 + 0.4 0.4 0.5 MeV Belle 3875.1 + 0.7 0.5 \pm 0.5 MeV BABAR Mass from D^0D^{*0} > mass from J/\ymp \pi\pi$
 - \triangleright width $3.9^{+2.8+0.2}_{-1.4-1.1}$ MeVBelle $3.0^{+1.9}_{-1.4\pm}0.9$ MeVBABAR

width from $D^0 D^{*0}$ > width from $J/\psi \pi \pi$

X(3872)

• Charmonium: 1⁺⁺ corresponds ³P₁ state

$$\begin{split} \chi_{c1}(1P) & \text{Mass: } 3510.66 \pm 0.07 \text{ MeV} \\ \chi_{c1}(2P) & \text{Mass: Quark model prediction} \\ \text{NR: } 3925 \text{ MeV} \\ \text{GI: } 3953 \text{ MeV} & \text{Not observed} \end{split}$$

1⁺⁺ Spectrum

"Charm Hadron and Nuclear Physics", Nov. 12, 2014, Tokyo Tech

Our picture of X(3872)

Two-meson molecule with a cc̄ core:
 ▷cc̄ - D⁰D̄^{*0} - D⁺D^{-*} - J/ψω – J/ψρ
 ▷ω and ρ have width.

 \triangleright J/ψ ω and J/ψ ρ couple to cc̄ only via DD̄* channels (OZI).

M. Takizawa and S. Takeuchi, Prog. Theor. Exp. Phys. 2013, 093D01 S.Takeuchi, K.Shimizu, and M.Takizawa, Prog. Theor. Exp. Phys. 2014, 123D01

Model Hamiltonian

•
$$H = H_0 + V$$

 $H_0 = \begin{pmatrix} H_0^{(P)} & 0 \\ 0 & E_0^{(Q)} \end{pmatrix}$
 $H_0^{(P)} = \sum_i \left(M_i + m_i + \frac{k_i^2}{2\mu_i} \right)$
 $V = \begin{pmatrix} V_{PP} & V_{PQ} \\ V_{QP} & 0 \end{pmatrix}$
 $P \cdot D^0 \overline{D}^{*0} - D^+ D^{-*} - 1/4 \mu \omega - 1/4 \mu \sigma$
 $O \cdot C\overline{C}$

 V_{PP} : potential between the two mesons V_{PQ} : coupling between the two-meson and $c\bar{c}$ channels $E_0^{(Q)}$: QM predicted $\chi_{c1}(2P)$ mass = 3950 MeV

- Interaction strengths are determined by
 - $D\overline{D}^*$ -J/ $\psi\omega$ coupling **u**: \leftarrow the quark model
 - qq̄ interaction to obtain this transfer strength. (Godfrey-Isgur)
 - ▶ RGM for $QM \rightarrow V_{PP} = N^{-1/2} H N^{-1/2} H_0$

- Interaction strengths are determined by $D \overline{D}^*$ interaction v:
 - Param set A: maximum attraction which does not make a bound state in $B\overline{B}^*$ systems.
 - Param set QM: use a quark model value
 - ⊳DD**¯*** cc̄ **coupling** g:
 - a free parameter to give the X(3872) peak energy.

X(3872): a bound state

10⁻¹ Density Density (I = 0)distribution $-D^+D^{*-}$ $DD^*(I=1)$ distri. of two mesons ⁻[φ]² (fm⁻¹) $r^2 |\phi_{MM}(r)|^2$ • Probability ⊳0.036 cc ○0.913 D⁰D^{*0} 10⁻⁵ • $J/\psi \, \omega$ D.034 D⁺D⁻*J/\u00ft 0 **0.010 J/ψω** ▷0.006 J/ψρ 2 6 4 interaction range r (fm)

Decay rate ∝ cc̄ self energy

$$\begin{split} \frac{\mathrm{d}W}{\mathrm{d}E} &= -\frac{1}{\pi} Im \left\langle c\bar{c} \big| G_Q(E) \big| c\bar{c} \right\rangle \qquad \int_{E_{threshold}}^{\infty} \frac{\mathrm{d}W}{\mathrm{d}E} \, \mathrm{d}E = 1 \\ \frac{\mathrm{d}W(c\bar{c} \to f)}{\mathrm{d}E} &= \frac{2}{\pi} \mu_f \int \frac{k^2 \mathrm{d}k \ \mu_f \Gamma_f}{\left(k_f^2 - k^2\right)^2 + \left(\mu_f \Gamma_f\right)^2} \left| \langle \langle f; k | V_{PQ} \tilde{G}_Q | c\bar{c} \rangle \right|^2 \\ \tilde{G} &= \frac{1}{E - H + i\Gamma(E)/2} \ \leftarrow \text{observed} \ \rho \to \pi \ \pi \text{ or } \omega \to \pi \ \pi \ \pi \text{ width} \end{split}$$

Vector meson widths

"Charm Hadron and Nuclear Physics", Nov. 12, 2014, Tokyo Tech

$c\bar{c} \rightarrow two mesons : for `bound' X(3872)$

1⁺⁺ Spectrum

"Charm Hadron and Nuclear Physics", Nov. 12, 2014, Tokyo Tech

X(3872) needs to be a bound state?

• No... it can be a virtual state

X(3872) needs to be a bound state?

• A virtual state can make $J/\psi \pi^n$ peak.

Summary of X(3872)

- In order to reproduce the properties of the X(3872), introduction of the all thresholds near the peak position is important.
- $c\bar{c} D^0\bar{D}^{*0} D^+D^{-*} J/\psi\omega J/\psi\rho$ full coupled channel calculation is necessary.
- cc component may explain the production rate of X(3872) in the pp^{bar} collisions.
- cc component gives rise to the additional attractive interaction effectively.

Summary of X(3872)

- Large rho-meson width enhances the isospin symmetry breaking.
- Calculation of the experimentally observed spectrum is important.

There is a mechanism to have narrow peaks of $J/\psi\rho,\omega$ and broader peaks of $D\overline{D}^*$.

Summary of X(3872)

- A large Isospin breaking can be realized. \triangleright sensitive to $(g/g_0)^2$
- $\frac{\Gamma(D^0 \overline{D}^{0^*})}{\Gamma(J/\psi \rho)}$ probe of the binding energy of X(3872)
- $D\overline{D}^*$ int, g, \rightarrow other heavy quark systems $D\overline{D}^*$ int $\sim B\overline{B}^*$ int (heavy quark symmetry) -> roughly consistent with $Z_b^+(10610)$, $Z_b^+(10650)$

Consideration about other hadronic molecules

• $Z_{b}^{+}(10610)$ and $Z_{b}^{+}(10650)$

Consideration about other hadronic molecules

- Z_c⁺(3900)
- Simultaneous explanation of Z_b^{\pm} and Z_c^{\pm} is rather difficult since heavy quark symmetry requires almost same interactions between DD^{*bar} and BB^{*bar}, but the kinetic energy of the BB^{*bar} system is much smaller than that of DD^{*bar} system.

At J-PARC

- So far, hadronic moleculer states have not been observed at the fixed target experiments.
- Target mass dependence of the production rate and the width of the hadronic molecule state may differ from that of the usual hadrons.

Further theoretical studies are necessary.

Backup

Radiative decays of X(3872)

Radiative decays of X(3872)

$$R_{\gamma} = \frac{B(X(3872 \rightarrow \psi(2S)\gamma))}{B(X(3872 \rightarrow J/\psi\gamma))}$$

BaBar: 3.4 ± 1.4 (3.5 σ) PRL102, 132001(2009)

Belle: < 2.1 (90%CL) PRL107, 091803(2011)

LHCb: $2.46 \pm 0.64(stat) \pm 0.29(sys)$ (4.4 σ) NP B886, 665 (2014)

Hadron physics with high-momentum beams at J-PARC, March 15, 2015, KEK

Belle's results $(J/\psi\gamma)$

FIG. 2 (color online). $M_{J/\psi\gamma}$ distributions for (a) $B^+ \rightarrow X(3872)(\rightarrow J/\psi\gamma)K^+$ and (b) $B^0 \rightarrow X(3872)(\rightarrow J/\psi\gamma)K_S^0$ decays. The curves show the signal (red dashed) and the back-ground component (blue dotted) as well as the overall fit (blue solid).

Belle's results $(\psi'\gamma)$

FIG. 3 (color online). $M_{\psi'\gamma}$ distributions for (a) $B^+ \rightarrow X(3872)(\rightarrow \psi'\gamma)K^+$ and (b) $B^0 \rightarrow X(3872)(\rightarrow \psi'\gamma)K^0$. The curves show the signal [red dashed for X(3872)] and the background component [pink dot-dashed for background from $B \rightarrow \psi'K^*$ and $B \rightarrow \psi'K$ component, and black dotted for combinatorial background modeled by the threshold function] as well as the overall fit (blue solid).

LHCb's results $(J/\psi\gamma)$

LHCb's results ($\psi'\gamma$)

Wavefunction of X(3872)

 Probability of the each component of X(3872)

Our numerical results:

Model	CC ^{bar}	D ⁰ D ^{*0bar}	D ⁺ D ^{*-}	Ϳ/ψρ	Ϳ/ψω
Case A	0.036	0.913	0.034	0.006	0.010
Case QM	0.061	0.864	0.019	0.007	0.019

 ρ and ω widths are not introduced for the radiative decay calculations.

Wavefunctions of Charmonia

- Charmonia: $\chi_{c1}(2P)$, $\psi(2S)$, J/ψ
- As for the wavefunction of charmonium we used the potential model of S. Godfrey and N. Isgur, PRD 32, 189 (1985) (without the LS and tensor terms for simplicity)
- $\chi_{c1}(2P)$ in the X(3872) is offshell, but we used the onshell wavefunction.

Radiative decays of X(3872)

E1 transiton of cc^{bar} core to J/psi(psi') γ

Vector meson dominance

Radiative decays of X(3872)

D meson loop (not considered here)

- Partial decay width $D^{+} \rightarrow D^{+} \gamma = 1.3 \text{ keV}$
- Overlap of $DD^{bar} J/\psi$ is small

E1 transitions of $\operatorname{cc}^{\operatorname{bar}}$ core $\Gamma(X(3872) \rightarrow J/\psi(\psi') + \gamma) = \left(\frac{2}{3}\right)^4 \alpha \left|\left\langle\psi_f \left|r\right|\psi_i\right\rangle\right|^2 E_{\gamma}^3 \frac{E_f^{c\overline{c}}}{M_i^{c\overline{c}}}$

$$\langle J/\psi | r | \chi_{c1}(2P) \rangle = 0.0396 \ fm$$
$$\langle \psi' | r | \chi_{c1}(2P) \rangle = 0.5225 \ fm$$

$\langle J/\psi | r | \chi_{c1}(2P) \rangle = 0$ for harmonic oscillator wavefunction

Radiative decay widths (cc^{bar} core contribution) Numerical result: Case A $\Gamma(X(3872) \rightarrow J/\psi + \gamma) = 0.7 \text{ keV}$ $\Gamma(X(3872) \rightarrow \psi' + \gamma) = 2.6 \text{ keV}$ $R = \frac{\Gamma(X(3872) \rightarrow \psi' + \gamma)}{\Gamma(X(3872) \rightarrow J / \psi + \gamma)} = 3.6$

Radiative decay widths (cc^{bar} core contribution) Numerical result: Case QM $\Gamma(X(3872) \rightarrow J/\psi + \gamma) = 1.0 \text{ keV}$ $\Gamma(X(3872) \rightarrow \psi' + \gamma) = 3.5 \text{ keV}$ $R = \frac{\Gamma(X(3872) \rightarrow \psi' + \gamma)}{\Gamma(X(3872) \rightarrow J / \psi + \gamma)} = 3.5$

VMD contribution

$$\Gamma_{VMD} = \frac{4}{27} \alpha \frac{q E_{J/\psi}}{m_X} \left| \psi_{\omega}(r=0) \right|^2 \left(Z_{\omega J/\psi} \phi_{\omega J/\psi}(q) + 3 Z_{\rho J/\psi} \phi_{\rho J/\psi}(q) \right)^2$$

q: photon momentum

 Z_{α}^{2} : probability of finding α component in X(3872)

Numerical result:

Case A

 $\Gamma_{VMD}(X(3872) \rightarrow J/\psi + \gamma) = 2.6 \text{ keV}$

Case QM

$$\Gamma_{VMD}(X(3872) \rightarrow J/\psi + \gamma) = 6.2 \text{ keV}$$

Discussions

 Since we cannot determine the relative sign of the cc^{bar} core contribution and VMD contribution, rough estimation is:

$$\Gamma(X(3872) \rightarrow J/\psi + \gamma)$$

= $\left(\sqrt{\Gamma_{VMD}} - \sqrt{\Gamma_{c\bar{c}}}\right)^2 \sim \left(\sqrt{\Gamma_{VMD}} + \sqrt{\Gamma_{c\bar{c}}}\right)^2$
= 0.6 keV ~ 6.0 keV (Case A)
= 1.6 keV ~ 12.2 keV (Case QM)

 $\frac{\Gamma(X(3872) \rightarrow \psi' + \gamma)}{\Gamma(X(3872) \rightarrow J / \psi + \gamma)}$ R = $= 0.43 \sim 4.3$ (Case A) $= 0.29 \sim 1.18$ (Case QM)

3.4 ± 1.4 [BaBar] < 2.1 (90%CL) [Belle] 2.46 ± 0.64(stat) ± 0.29(sys) [LHCb]

Ψ(4040,4415) -> X(3872) + γ

BESIII observed the radiative decay
 Y(4260) -> X(3872) + γ
 PRL 112, 092001 (2014)

$$\frac{B[Y(4260) \rightarrow X(3872) \gamma]}{B[Y(4260) \rightarrow J / \psi \pi^{+} \pi^{-}]} = 0.1$$

• Y(4260) may be not a simple charmonium and the structure of Y(4260) is unclear.

Ψ(4040,4415) -> X(3872) + γ

- We consider well established $\psi(3S, 4040)$ and $\psi(4S, 4415)$ instead of Y(4260).
- We consider E1 transiton of cc^{bar 3}S₁(n=3,4) -> cc^{bar} core of X(3872) + y.

Decay width	Ψ(4040) -> Χ(3872) γ	Ψ(4415)-> Χ(3872) γ
Case A	2.4 keV	0.16 keV
Case QM	4.0 keV	0.27 keV

- Estimation of $\Gamma(X(3872) \rightarrow J/\psi + \gamma)$ is rather difficult.
- $\Gamma(X(3872) \rightarrow \psi' + \gamma)$ is proportional to size of cc^{bar} core component in X(3872).
- The measurement of absolute value of $\Gamma(X(3872) \rightarrow \psi' + \gamma)$ is very important to determine the nature of X(3872).

Summary

- We have a chance to observe $\psi(4040) \rightarrow X(3872) \gamma$ decay.
- $\Gamma(Y(4260) \rightarrow X + \gamma) < \Gamma(\psi(4040) \rightarrow X + \gamma)$ since Y(4260) may have the non-cc^{bar} component.