Heavy Quarkonium Production

Jianwei Qiu Brookhaven National Laboratory

Based on works done with Z.-B. Kang, Y.-Q. Ma, G. Nayak, G. Sterman, H. Zhang, ...

KEK Theory Center Workshop on

Hadron physics with high-momentum hadron beams at J-PARC in 2015 KEK, Tsukuba, Japan, March 13-16, 2015

The Lederman's Shoulder

Production of muon pairs at AGS, BNL $p(29 \,\text{GeV}) + U \Longrightarrow \mu^+ \mu^- (M_{\mu\mu}) + X$

"..., the cross section varies smoothly as

$$\frac{d\sigma}{dM_{\mu\mu}} \approx \frac{10^{-32}}{M_{\mu\mu}^5} \ \mathrm{cm}^2 \left(\frac{\mathrm{GeV}}{c}\right)^{-2}$$

and exhibits no resonant structure. ..."

The Lederman's Shoulder

Production of muon pairs at AGS, BNL $p(29 \,\mathrm{GeV}) + U \Longrightarrow \mu^+ \mu^- (M_{\mu\mu}) + X$ "..., the cross section varies smoothly as $\frac{d\sigma}{dM_{\mu\mu}} \approx \frac{10^{-32}}{M_{\mu\mu}^5} \,\mathrm{cm}^2 \left(\frac{\mathrm{GeV}}{c}\right)^{-2}$ and exhibits no resonant structure. ..." **Discovery of the Drell-Yan mechanism:** P_{A} γ* P_{B}

Phys. Rev. Lett. 25, 316 (1970), Erratum-ibid. 25 (1970) 902

The Lederman's Shoulder

Outline

Exclusive J/ ψ production in π^- p collisions

Heavy quarkonium production in pp, pA, π -p, ... collisions

Summary and outlook

Exclusive J/ ψ production in π -p collisions

□ **Proposal**:

Phys. Lett. B523, 265 (2001) 265

Factorization:

- ♦ Necessary conditions:
 - Active partons are perturbatively pinched to be on-shell
 - Separation of physics at different scales
 - . . .

Exclusive J/ ψ production in π -p collisions

Proposal:

Phys. Lett. B523, 265 (2001) 265

|t|

<< ()

☐ Factorization:

- Necessary conditions:
 - Active partons are perturbatively pinched to be on-shell
 - Separation of physics at different scales
 - .

♦ Concerns:

- Separation of DA? the gluon is Not necessary far off-shell
- Nonperturbative resonances if the time-like exchange is far off-shell
- ...

Heavy quarkonium production

□ One of the simplest QCD bound states:

Localized color charges (heavy mass), non-relativistic relative motion

Charmonium: $v^2 \approx 0.3$ **Bottomonium:** $v^2 \approx 0.1$

Well-separated momentum scales – effective theory:

Cross sections and observed mass scales:

 $\frac{d\sigma_{AB\to H(P)X}}{dydP_T^2} \qquad \sqrt{S}, \qquad P_T, \qquad M_H,$

PQCD is "expected" to work for the production of heavy quarks Difficulty: Emergence of a quarkonium from a heavy quark pair?

Basic production mechanism

QCD factorization is likely to be valid for producing the pairs:

- ♦ Momentum exchange is much larger than 1/fm
- ♦ Spectators from colliding beams are "frozen" during the hard collision

Approximation: on-shell pair + hadronization

$$\sigma_{AB\to J/\psi}(P_{J/\psi}) \approx \sum_{n} \int dq^2 \left[\sigma_{AB\to [Q\bar{Q}](n)}(q^2) \right] F_{[Q\bar{Q}(n)]\to J/\psi}(P_{J/\psi}, q^2)$$

Models & Debates

 \Leftrightarrow Different assumptions/treatments on $F_{[Q\bar{Q}(n)] \rightarrow J/\psi}(P_{J/\psi}, q^2)$ how the heavy quark pair becomes a quarkonium?

A long history for the production

Color singlet model: 1975 –

Only the pair with right quantum numbers Effectively No free parameter!

□ Color evaporation model: 1977 –

Einhorn, Ellis (1975), Chang (1980), Berger and Jone (1981), ...

Fritsch (1977), Halzen (1977), ...

All pairs with mass less than open flavor heavy meson threshold One parameter per quarkonium state

□ NRQCD model: 1986 –

Caswell, Lapage (1986) Bodwin, Braaten, Lepage (1995) QWG review: 2004, 2010

All pairs with various probabilities – NRQCD matrix elements Infinite parameters – organized in powers of v and α_s

□ QCD factorization approach: 2005 –

Nayak, Qiu, Sterman (2005), ... Kang, Qiu, Sterman (2010), ... Kang, Ma, Qiu, Sterman (2014)

 $P_T >> M_H$: M_H/P_T power expansion + α_s – expansion Unknown, but universal, fragmentation functions – evolution

□ Soft-Collinear Effective Theory + NRQCD: 2012 –

Fleming, Leibovich, Mehen, ...

NLO NRQCD vs data – Butenschoen et al.

NLO NRQCD vs data – Gong et al.

NLO NRQCD vs data – Chao et al.

QCD factorization – Kang et al.

$$d\sigma_{A+B\to H+X}(p_T) = \sum_{f} d\hat{\sigma}_{A+B\to f+X}(p_f = p/z) \otimes D_{H/f}(z, m_Q)$$

$$+ \sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+B\to [Q\bar{Q}(\kappa)]+X}(p(1\pm\zeta)/2z, p(1\pm\zeta')/2z)$$

$$\otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q)$$

□ Channel-by-channel comparison with NLO NRQCD:

LO QCD + LO NRQCD factorization

Kang, Ma, Qiu and Sterman, 2014

□ Color singlet as an example:

QCD Factorization = better controlled HO corrections!

QCD factorization vs NRQCD factorization

QCD factorization – valid to the 1^{st} two powers in $1/P_T$:

- \diamond Expand physical cross section in powers of 1/P_T (LP + NLP + ...)
- \diamond Factorization at each power in $1/p_T$: perturbative coef. \otimes fragmentation
- \diamond Factorization of LP and NLP is "proved" to be valid for all powers of α_s

□ NRQCD factorization – conjectured:

- \diamond Expand physical cross section in powers of relative velocity of HQ
- $\diamond\,$ Expand the coefficient of each term in powers of $\,\alpha_{\,\rm s}$
- \diamond Verified to NNLO in $\,\alpha_{\,\rm s}$ for the leading power term in the *v*-expansion

Connection or matching:

If NRQCD factorization for fragmentation functions is valid,

$$E_P \frac{d\sigma_{A+B\to H+X}}{d^3 P}(P, m_Q) \equiv E_P \frac{d\sigma_{A+B\to H+X}^{\text{QCD}}(P, m_Q = 0) + E_P \frac{d\sigma_{A+B\to H+X}^{\text{NRQCD}}(P, m_Q \neq 0) - E_P \frac{d\sigma_{A+B\to H+X}^{\text{QCD}-\text{Asym}}}{d^3 P}(P, m_Q \neq 0) - E_P \frac{d\sigma_{A+B\to H+X}^{\text{QCD}-\text{Asym}}(P, m_Q = 0)}{d^3 P}$$

Mass effect + P_T region ($P_T\gtrsim m_Q$)

□ Puzzling rapidity dependence:

Fixed target + RHIC exp'ts

LHCb has similar forward rapidity result

 \Rightarrow x_F – scaling (not x₂-scaling) in low energy data

 Less suppression from LHC data (early CGC calculation does not work)

♦ NO QGP (m_Q >> T)! → Cold nuclear effect for the "production"
 ♦ Nuclei as potential filters of production mechanisms
 ♦ Hard probe (m_Q >> 1/fm) → quark-gluon structure of nucleus!

Nucleus is not a simple superposition of nucleons!

Production with multiple scattering

Backward production in p(d)+A collisions: $p \rightarrow Q \qquad J/\Psi \text{ could be formed} \\ Inside nucleus$ Multiple scattering interfere with the non-perturbative hadronization - no factorization!!

Brodsky and Mueller, PLB 1988

□ Production at low P_T (→0) in p(d)+A collisions:

Production with multiple scattering

Brodsky and Mueller, PLB 1988

 \diamond Multiple scattering with incoming parton & heavy quarks, not J/ Ψ

Production with multiple scattering

□ *Forward* production in p(d)+A collisions:

Q

Q

Brodsky and Mueller, PLB 1988

 \diamond Multiple scattering with incoming parton & heavy quarks, not J/ Ψ

- Induced gluon radiation energy loss suppression at large y
- ♦ Modified P_T spectrum transverse momentum broadening
- De-coherence of the pair different QQ state to hadronize lower rate
 - Soft multiple scattering "random walk"

Momentum imbalance – larger invariant mass

Match to the tail of wave function - ``suppression"

Suppression in total production rate

- □ If J/ ψ were produced at the collision point:
 - \diamond Nuclear effect in PDFs
 - \Rightarrow Medium dependence from J/ ψ -nucleon absorption
- Glauber model:

$$\sigma_{AB} \approx AB\sigma_{NN} e^{-\rho_0 \sigma_{abs}^{J/\psi} L_{AB}}$$

- Expect a straight line on a semi-log plot
- \Box Need a much too larger $\sigma_{\rm abs}$

 L_{AB}

Suppression in total production rate

\Box J/ ψ is NOT produced at hard collision!

Qiu, Vary, Zhang, PRL 2002

Final-state: Increases the invariant mass

of the pair – hit open threshold

 $\overline{Q}^2 > Q^2$ $q^2 \Rightarrow q^2 + \varepsilon L_{_{4R}}$

Suppression of J/ψ

 $\varepsilon \sim \hat{q} \sim \langle \Delta q_T^2 \rangle$

❑ Threshold effect leads to different effective σ_{abs}

Curved line for R_{pA}

□ Different suppression for ψ ' Difference in threshold behavic.

A-dependence in rapidity y (x_F) in p+A

□ Picture + assumptions:

Arleo, Peigne, 2012 Arleo, Kolevatov, Peigne, 2014

- Color neutralization nappens on long time scales: $t_{
 m octet} \gg t_{
 m hard}$
- Medium rescatterings do not resolve the octet cc pair
- Hadronization happens outside of the nucleus: $t_{\psi} \gtrsim L$
- cc pair produced by gluon fusion

□ Model energy loss:

 $\frac{1}{A} \frac{d\sigma_{pA}}{dE}(E,\sqrt{s}) = \int_0^{\varepsilon_{\max}} d\varepsilon \,\mathcal{P}(\varepsilon,E) \,\frac{d\sigma_{pp}}{dE}(E+\varepsilon,\sqrt{s}) \qquad \hat{q}(x) \sim \hat{q}_0 \left(\frac{10^{-2}}{x}\right)^{0.3}$ $\mathcal{P}(\varepsilon,E): \text{ Quenching weight ~ scaling function of } \sqrt{\hat{q}L}/M_\perp \times E$

A-dependence in rapidity $y(x_F)$ in p+A

A-dependence in P_T in p+A

Arleo, Peigne, 2012 Arleo, Kolevatov, Peigne, 2014

$$\frac{1}{A} \frac{d\sigma_{\rm pA}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} = \int_{\varepsilon} \int_{\varphi} \mathcal{P}(\varepsilon, E) \frac{d\sigma_{\rm pp}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} \left(E + \varepsilon, \vec{p}_{\perp} - \Delta \vec{p}_{\perp}\right)$$

□ Model:

□ Nuclear A-dependence: $R_{pA}^{\psi}(y, p_{\perp}) \simeq R_{pA}^{\text{loss}}(y, p_{\perp}) \cdot R_{pA}^{\text{broad}}(p_{\perp})$

Quarkonium P_T distribution

Quarkonium production is dominated in low p_T region

- □ Both quarkonium and Drell-Yan low p_T distributions at collider energies are determined by the gluon shower of incoming partons (initial-state effect)
 Qiu, Zhang, PRL, 2001
- □ Because of heavy quark mass, final-state interactions suppress the formation of J/ψ , but should not be an important factor for low p_T spectrum

Quarkonium P_T distribution

□ Y-spectrum is almost perturbative:

Berger, Qiu, Wang, PRD 2005

all order resummation of soft gluon shower

A-dependence in P_T in p+A

□ Ratio of x-sections:

Guo, Qiu, Zhang, PRL, PRD 2002

Quarkonium P_T-broadening in p+A

Johnson, et al, 2007

Broadening of heavy quarkonia in p(d)+A

□ Final-state effect is important:

Kang, Qiu, PRD77(2008)

Mass – independence, not very sensitive to the feeddown

Rapidity dependence in p+A

Resummed multiple scattering:

In the forward region,

$$\frac{d}{dx} \left[f_{a/p}(x_F + x) \right]_{x = x_2(x_F, Q)} \gg \frac{d}{dx} \left[f_{b/A}(x) \right]_{x = x_2(x_F, Q)}$$

$$x_1 = x_F + x_2$$
 $x_2 = \frac{1}{2} \left[\sqrt{x_F^2 + 4Q^2/s} - x_F \right]$

Quarkonium p_T distribution in high energy pA

QCD factorization for A^{1/3} enhanced contribution:

Time dilation factor:

$$\frac{1}{mv} \left(\frac{P_{\parallel}}{M}\right) \gg \frac{1}{P_{\perp}} \sim \frac{1}{Q_s(A)}$$
$$\Rightarrow y \gg \ln\left(\frac{2mv}{P_T}\right) \sim \ln\left(\frac{Mv}{Q_s(A)}\right)$$

Condition for multiple scattering not to interfere with hadronization

Heavy quarkonium production in pA collisions:

♦ Kang et al.: NRQCD, CEM, $P_T \sim Q_s >> M$, ...
1309.7337 – small-x evolution + CGC multiple scattering

 \diamond Qiu et al.: NRQCD, CEM, P_T ~ Q_s << M

1310.2230

Coherent multiple scatteing + Sudakov resummation

Summary

Heavy quarkonium production has been a powerful tool to test and challenge our understanding of strong interaction and QCD

□ Both initial-state and final-state multiple scattering are relevant for nuclear dependence of quarkonium production – could redistribute both the p_T and y dependence

Nuclei could be excellent filters to help identify the production and suppression mechanism via the multiple scattering

J-PARC program on heavy quarkonium production could provide very important contributions to the search of the true production mechanism of heavy quarkonia

Thank you!

Backup slides

Final-state multiple scattering - CEM

Double scattering – $A^{1/3}$ dependence:

Kang, Qiu, PRD77(2008)

$$\Delta \langle q_T^2 \rangle_{\mathrm{HQ}}^{\mathrm{CEM}} \approx \int dq_T^2 q_T^2 \int_{4m_Q^2}^{4M_Q^2} dQ^2 \frac{d\sigma_{hA \to Q\bar{Q}}^D}{dQ^2 dq_T^2} \Big/ \int_{4m_Q^2}^{4M_Q^2} dQ^2 \frac{d\sigma_{hA \to Q\bar{Q}}}{dQ^2}$$

□ Multiparton correlation:

$$T_{g/A}^{(F)}(x) = T_{g/A}^{(I)}(x) = \int \frac{dy^{-}}{2\pi} e^{ixp^{+}y^{-}} \int \frac{dy_{1}^{-}dy_{2}^{-}}{2\pi} \theta(y^{-} - y_{1}^{-})\theta(-y_{2}^{-})$$

$$\times \frac{1}{xp^{+}} \langle p_{A} | F_{\alpha}^{+}(y_{2}^{-})F^{\sigma+}(0)F^{+}{}_{\sigma}(y^{-})F^{+\alpha}(y_{1}^{-}) | p_{A} \rangle$$

$$= \lambda^{2} A^{4/3} \phi_{g/A}(x)$$

□ Broadening – twice of initial-state effect:

$$\begin{split} \Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm CEM} &= \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \,\lambda^2 A^{1/3} \right) \frac{(C_F + C_A) \sigma_{q\bar{q}} + 2C_A \sigma_{gg}}{\sigma_{q\bar{q}} + \sigma_{gg}} \\ &\approx 2C_A \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \,\lambda^2 A^{1/3} \right) & \text{if gluon-gluon dominates,} \\ &\text{and if } \mathbf{r}_{\rm F} > \mathsf{R}_{\rm A} \end{split}$$

Final-state multiple scattering - NRQCD

Cross section:

Kang, Qiu, PRD77(2008)

$$\sigma_{hA\to H}^{\text{NRQCD}} = A \sum_{a,b} \int dx' \phi_{a/h}(x') \int dx \phi_{b/A}(x) \left[\sum_{n} H_{ab\to Q\bar{Q}[n]} \langle \mathcal{O}^{H}(n) \rangle \right]$$

Broadening:

$$\Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm NRQCD} = \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) \frac{(C_F + C_A)\sigma_{q\bar{q}}^{(0)} + 2C_A \sigma_{gg}^{(0)} + \sigma_{q\bar{q}}^{(1)}}{\sigma_{q\bar{q}}^{(0)} + \sigma_{gg}^{(0)}}$$

Hard parts:

$$\hat{\sigma}_{q\bar{q}}^{(0)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{16}{27} \delta(\hat{s} - M^2) \langle \mathcal{O}^H({}^3S_1^{(8)}) \rangle \qquad \text{Only color octet} \\ \hat{\sigma}_{q\bar{q}}^{(1)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{80}{27} \delta(\hat{s} - M^2) \langle \mathcal{O}^H({}^3P_0^{(8)}) \rangle \qquad \text{Channel contributes} \\ \hat{\sigma}_{gg}^{(0)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{5}{12} \delta(\hat{s} - M^2) \Big[\langle \mathcal{O}^H({}^1S_0^{(8)}) \rangle + \frac{7}{m_Q^2} \langle \mathcal{O}^H({}^3P_0^{(8)}) \rangle \Big]$$

Leading features:

$$\Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm NRQCD} \approx \Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm CEM} \approx (2C_A/C_F) \Delta \langle q_T^2 \rangle_{\rm DY}$$