Hadron physics with high-momentum hadron beams at J-PARC in 2015 March 13-16, 2015, KEK

Experiments on mesoesiominchearlepostter

Hiroaki Ohnishi RIKEN/RCNP, Osaka Univ.

Final goal for the hadron physics

to understand strong interacting matter quark/hadron/nuclei to high density nuclear matter

How this world created based on QCD

Key to understand QCD at low energy

 Spontaneous breaking of chiral symmetry
 Confirment

Key for Hadron property -> mass, structure

Large coupling constant at low energy region pQCD will not work

Lattice QCD may help us to understand the situation

Spontaneous breaking of chiral symmetry

 Spontaneous breaking of chiral symmetry is characterized by QCD order parameter

i.e. $\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle \neq 0$

 The order parameter is changing as a function of its environmental temperature and density

How to access

meson property in nucleus

- · Idea : embed meson in nuclear matter
 - → property change on the embedded meson will tell us vacuum structure where meson exist

· Two possible approaches are exist.

- producing meson in nucleus and reconstruct invariant mass via its decayed particles
 (c.f. φ, ω, ρ, J/ψ→e⁺e⁻, μ⁺μ⁻)
- producing meson-nucleus bound state
 (medic-nucleus)

Invariant mass analysis

di-lepton measurement in heavy ion collisions

- · di-electron and di-muon measurement
 - in Sulfer nucleus on nucleus collisions
 - CERN: NA34/NA45
 - \rightarrow low mass direction enhancement
- di-muon measurement in p-A to A-A collisions
 CERN : NA38/NA50/NA60
 - \rightarrow J/ ψ suppression, ρ , ϕ etc.
- di-lepton measurement

at PHENIX/RHIC, ALICE,CMS/LHC

Selected results from NA60

· J/ ψ suppression in heavy ion collisions

Anomalous J/ ψ suppression present in HI collisons

The following pattern is observed:

- Onset of anomalous suppression between 80 < NPart < 100
- 2) Saturation at large NPart

Unexpected phenomena (vacuum property change) observed!

Selected results from NA60 (2)

· low mass dimuon spectra in high temperature matter

 ω and ϕ meson are clearly identified

simple approach is used to subtract known sources (except the)

 ω and ϕ yields fixed to get, after subtraction, a smooth underlying continuum

 η: set upper limit by
 "saturating" the yield in the mass region 0.2–0.3 GeV
 leads to a lower limit for the excess at low mass

Selected results from NA60 (2)

· low mass dimuon spectra in high temperature matter

Excess spectra can be described very well with broadening of ρ meson!

No width mass shift is observed on *p* meson

Selected results from NA60 (2)

 $\cdot \phi$ meson

For the ϕ meson, mass shift nor broadening are not observed (within detector resolution)

Normal nuclear matter density i.e. p-A and γ A collisions

KEK-PS/E325, SPring-8/LEPS, J-Lab/CLAS

¢meson in normal nuclear

bunts/[6.7MeV/c²] -150 Cu $\beta\gamma < 1.25$ matter week ending PHYSICAL REVIEW LETTERS PRL 98, 042501 (2007) 26 JANUARY 200 50 Evidence for In-Medium Modification of the ϕ Meson at Normal Nuclear Density R. Muto,^{1,*} J. Chiba,^{2,†} H. En'yo,¹ Y. Fukao,³ H. Funahashi,³ H. Hamagaki,⁴ M. Ieiri,² M. Ishino,^{3,‡} H. Kand 2 /ndf=83/50 M. Kitaguchi,³ S. Mihara,^{3,‡} K. Miwa,³ T. Miyashita,³ T. Murakami,³ T. Nakura,³ M. Naruki,¹ K. Ozawa,^{4,||} F. S O. Sasaki,² M. Sekimoto,² T. Tabaru,¹ K. H. Tanaka,² M. Togawa,³ S. Yamada,³ S. Yokkaichi,¹ and Y. Yoshi (KEK-PS E325 Collaboration) counts/[6.7MeV/c²] βγ<1.25 βγ<1.25 counts/[6.7MeV/c² Cu Invariant mass spectra for ϕ meson 60 100 in heavy nucleus shows 40 3.4% mass shift 50 20 3.6 times width broadening counts/[6.7MeV/c²] counts/[6.7MeV/c² 25<βγ<1.75 150 when only the slowly moving phi 100 100 mesons with respect to the 50 50 target nuclei were selected counts/[6.7MeV/c²] (βγ_φ<1.25) 1.75<βγ counts/[6.7MeV/c² 1.75<βγ 300 200 detail will be discussed 100 0 1.1 1 1 in next talk [GeV/c²] [GeV/c² PRL 98, 042501 (2007)

Absorption? even observed in γ d reaction

Physics Letters B

Contents lists available at Sciencellizert

Physics Letters B

Contents lists available at SpienceDirect

Measurement of the incoherent $\gamma d \rightarrow \phi pn$ photoproduction near threshold

LEPS Collaboration

W.C. Chang^{4,*}, M. Miyabe^b, T. Nakano^c, D.S. Ahn^{c,d}, J.K. Ahn^d, H. Akimune^e, Y. Asano^f, S. Daté⁴, H. Ejiri^c, H. Fujimura^h, M. Fujiwara^{c,i}, S. Fukuj^j, S. Hasegawa^c, K. Hicks^k, K. Horie^c, T. Hotta^c, K. Imai^b, T. Ishikawa^h, T. Iwata¹, Y. Kato^c, H. Kawai^m, K. Kino^c, H. Kohri^c, N. Kumagai^g, S. Makinoⁿ, T. Matsuda^o, T. Matsumura^p, N. Matsuoka^c, T. Mibe^c, M. Miyachi^q, N. Muramatsu^{c,i}, M. Niiyama^b, M. Nomachi^r, Y. Ohashi^g, H. Ohkuma^g, T. Ooba^m, D.S. Oshuev^a, C. Rangacharyulu^s, A. Sakaguchi^r, P.M. Shagin^r, Y. Shiino^m, II. Shimizu^h, Y. Sugaya^r, M. Sumihama^c, Y. Toi^o, II. Toyokawa^g, M. Uchida^u, A. Wakai^v, C.W. Wang^a, S.C. Wang^a, K. Yonehara^e, T. Yorita^{c,g}, M. Yoshimura^w, M. Yosoi^c, R.G.T. Zegers^x

The extraction of ϕ -N total cross section from $d(\gamma, pK^+K^-)n$

CLAS Collaboration

X. Qian^{4,*}, W. Chen⁴, H. Gao⁴, K. Hicks^b, K. Kramer⁴, J.M. Laget^{c,d}, T. Mibe^b, S. Stepanyan^d, D.J. Tedeschi^e, W. Xu^f, K.P. Adhikari^{af}, M. Amaryan^{af}, M. Anghinolfi^W, H. Baghdasaryan^{am}, J. Ball^e, M. Battaglieri^W, V. Batourine^d, I. Bedlinskiy², M. Bellis^k, A.S. Biselli^{p,4g}, C. Bookwalter^r, D. Branford^o, W.J. Briscoe^s, W.K. Brooks^{4l,d}, V.D. Burkert^d, S.L. Careccia^{4f}, D.S. Carman^d, P.L. Cole^{11,d}, P. Collins¹¹, V. Crede^r, A. D'Angelo^{X,ai}, A. Danie^b, N. Dashyan³⁰, R. De Vita^W, E. De Sanctis⁷, A. Deur^d, B. Dey^k, S. Dhamija⁴, R. Dickson^k, C. Djalali⁴, G.E. Dodge^{4f}, D. Doughty^{11,d}, R. Dupre⁴, P. Eugenio¹⁷, G. Fedotov^{4j}, S. Forrac¹, P. Forrach³, A. Fradi^V, M.Y. Cabrielson^{4f}, C.P. Cilford^{e, M.K.L.} Circumenti^{4,d}, F.Y. Circul⁴, ²

> Experiment : $\gamma d \rightarrow \phi X$ Extracted ϕN cross section $\sigma_{\phi N} = 20 \text{ mb}$ Again $\sigma_{\phi N}$ Expected, $\sigma_{\phi N} = 11 \text{ mb}$ (upper limit) How to explain this discrepancy?

Again width broadening of ϕ meson in nuclear matter even on deuteron?

φ meson absorption? by nuclear matter? even with deuteron (single nucleon??)

Open question and puzzles

- The mass shift is not seen in high temperature matte? But width broadening are observed
- · Mass shift observed in p-A collisions, but not in γ -A collisions

How do we understand those information consistently?

Indeed we need new experimental data with high precession

Another way to access the information about meson property in nuclear matter

mesic-nucleus

How to produce meson nucleus bound state?

- hint : pionic atom formation experiment performed at GSI, RIBF
- producing pion at rest
 respect to target
 nucleus for this case
 using (d,³He) reaction

- slow pion will be captured via nucleus
- Formation will be identified via missing mass analysis
 - → if bound state formed peak structure in missing mass spectra will be appeared

masic-nucleus formation experiment at J-PARC

- · Kaonic nucleus : via 3He(K-,n) and (π ,K) reaction J-PARC E15 , J-PARC E27
- ω mesic nucleus : via (π ,n) reaction J-PARC E26
- · ϕ mesic nucleus : via pbar+p $\rightarrow \phi \phi$ in nucleus J-PARC E29

J-PARC I ol

· η mesic nucleus : via (π ,n)

Hadron physics performed or planed at J-PARC

J-PARC E15 Search for K-pp bound state

• K-3He \rightarrow "ppK-" + n using 1 GeV/c K- beam

1st physics data taking completed on May 2014

2nd physics run planed very soon
 (April 2015 -)

1st physics results

The tail structure is not due to "the detector resolution"

1st physics results

Spectrum below the Threshold

- No significant bump-structure in the deep-binding region
- Statistically significant excess just below the threshold

J-PARC E27

· Search for K-pp bound state via (π ,K) reaction on deuteron

Missing mass spectroscopy $\Delta M = 2.5 MeV$

Search for

ϕ meson bound state

To produce ϕ meson bound state,

it is essential to producing slowly moving ϕ meson

pbar-p $\rightarrow \phi \phi$ reaction will be a best candidate

(1) relatively large cross section

(2) only produce slowly moving ϕ meson

Idea to produce ϕ meson bound state

Search for ϕ meson bound state

- · If ϕ -N interaction is attractive enough, we will be able to detect signal of bound state.
- · need strong antiproton beam ($0.8 \sim 1.1 \text{ GeV/c}$) \rightarrow there are available at J-PARC
- preparation for the concrete proposal to ask stage-2 approval is under the way

ω meson in nucleus

- J-PARC E26 experiment
- Producing w meson using (π^-,n) reaction
- ω meson will be produce at rest (zero momentum respect to nucleus) to choosing incident pion momentum
- ω line shape in nucleus evaluated via $\pi^0 \gamma$ decay channel of ω 0.5

orward neutron : @ mass

Mesic nucleus

- So far, only clear results are coming out from pion-nucleus system, a.k.a pionic-atom.
- However, new hints appeared in Kaon sector.
 (Kaon nucleus bound state)
- Other possibilities of mesic nuclear system are planed to explored at J-PARC.

i.e. search for ω , ϕ , η meson bound state

Once mesic-nucleus system is identified, we can start to investigate interaction between meson and nucleus

What will come next?

 high momentum beam line will open new door for the hadron physics at J-PARC

 $\cdot\,$ It is "charm meson / hidden charm meson" in nuclear matter

· For example,

•

- D meson-nucleus
- J/ψ -nucleaus bound state

Problem is "it is not clear how to measure".

Because, to produce charm quark,

we need high energy beam

 \rightarrow produced charmonium moving very fast respect to nucleus

One possibility : using anti-proton

Just concentrate on J/ ψ production using pbar-p \rightarrow J/ ψ channel (only J/ ψ produced!) This channel. It is not necessary to taking effect of feed down into account Very well known production cross section (~311 nb for pbar-p \rightarrow J/ $\psi \rightarrow \mu \mu$ on pole energy where beam momentum of anti-p is 4.07 GeV/c)

Advantage (?) :

Antiproton will absorbed on the surface of nucleus i.e. Produced J/ ψ will penetrate through nucleus

Toward J/ ψ nucleus bound state

Once $\sigma_{J/\psi-N}$ determined clearly, more accurate evaluation about existence for J/ψ bound state will be possible.

The lesson we learned from light meson nuclear bound state formation experiment, producing slow momentum J/ψ production is essential

However, "how to produce slow J/ ψ ?" is not clear. Momentum for J/ ψ on pbar-p \rightarrow J/ ψ is ~ 4.07 GeV/c which is too large to produce nuclear bound state?

We need to produce J/ψ with momentum \sim a few hundred MeV/c

Slow J/ ψ production

We will be able to use reaction pbar+ ⁴He \rightarrow J/ ψ +³He "³He" emitted forward direction At production threshold, Momentum transfer [MeV/c] 00 00 00 00 00 00 i.e. p=4.07 GeV/c, momentum for J/ψ will be 200 MeV/c. (marginal momentum 100 to produce bound state)

Problem is

"no one knows the cross section for the reaction"

Summary

 investigation on meson property in nuclear media is one of the hot topics on the physics program at J-PARC

via "invariant mass analysis" and "mesic-nucleus"

 Physics data taking at J-PARC will be resumed soon, therefore we will have new results with in a few years

 High momentum beam line will open new opportunities → hadron physics with charm quark

Close and intensive discussions between theorists and experimentalist are needed (like this workshop)

•

 \rightarrow what we need to measure and what we can learn from it