WS on Hadron Physics with high-momentum hadron beams at J-PARC 13-16 March, 2015

Charmed Hadron Experiments at J-PARC

H. Noumi (RCNP, Osaka University) 15 March, 2015

Contents:

- 1. A new platform for hadron physics at J-PARC
- 2. Charmed Baryon Spectroscopy
 - Study of Hadron Structure
 - Mass Spectrum, Production, and Decay
- 3. Strange Hyperon System
- 4. Summary

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam:

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam:

* Sanford-Wang:15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%

Beam correlation btw p vs x at DFP

Charmed Baryon Spectroscopy Using Missing Mass Techniques

Conducted by the E50 experiment at J-PARC

CHARM Spectrometer

Production Cross Section

A. Hosaka et al.

- Experimental data:
 - $\sigma(p(\pi^{-},D^{*-})\Lambda_{c}) < 7 \text{ nb} (68\% \text{CL})$ (BNL exp., 1985)
 - BG spectrum is well reproduced by a MC simulation w/ JAM
- Regge Theory suggests 10⁻⁴ of the hyperon production

 $- \underline{\sigma(p(\pi^-, D^{*-})A_{\underline{c}})} \sim a \text{ few nb}$

Inclusive Spectrum and Decay Mode ID (Sim.)

Hadron Structure

- Tomography
 - Distribution Function of Q and G in hadron (N)
 - How to approach hadrons other than N?
- Spectroscopy
 - Effective DOF (quark, diquark, hadron, ...) and correlations among them
 - Why they appear and form hadrons?
 - Current quark <-> EDOF <-> Hadrons?
- Hadrons as objects in the non-perturbative region of QCD
 - Relation btw "Distribution" and "Correlation"

What we can learn from baryons with heavy flavors

- Quark motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

Schematic Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- HQ spin multiplet $(\vec{s}_{HQ} \pm \vec{j}_{Brown Muck})$

CQM calculation (Lambda)

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida (Tokyo I. Tech.)

CQM calculation (Sigma)

non-rel. QM: $H=H_0+V_{conf}+V_{SS}+V_{LS}+V_T$ $\rho-\lambda$ mixing (cal. By T. Yoshida)

Little is known about charmed baryons

- Limited # of excited states are reported.
- Most of Spins/Parties are not determined.
- Partial Decay Width are not measured.

Level structure (Exp.)

✓ λ / ρ mode assignment is not established yet.
 ✓ Little of Y_c is known.

Lambda Baryons

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida)

$\Lambda_{\rm c}(2880)/\Lambda_{\rm c}(2940)$

- Are $\Lambda_c(2880)/\Lambda_c(2940)$ LS partners?
 - LS splitting; $\Delta E(J^{,J_v)^{(2L+1)/2}$
 - $\Delta E(5/2^+, 3/2^+)/\Delta E(3/2^-, 1/2^-)=5/3$

c.f. exp. 60 MeV/35 MeV~5/3 seems consistent?

$\Lambda_{\rm c}(2880)/\Lambda_{\rm c}(2940)$

- Are $\Lambda_c(2880)/\Lambda_c(2940)$ *LS* partners?
 - LS splitting; $\Delta E(J^{,J_v)^{(2L+1)/2}$
 - $\Delta E(5/2^+, 3/2^+)/\Delta E(3/2^-, 1/2^-)=5/3$

c.f. exp. 60 MeV/35 MeV~5/3 seems consistent?

- If they are λ mode excited states w/ $L_{(\lambda)} = 2...$
 - $\Lambda_{\rm c}$ (2880):5/2⁺, $\Lambda_{\rm c}$ (2940):3/2⁺, possibly

 \rightarrow [HQ(1/2⁺) + Brown Muck(2⁺)]; HQS doublet?

- $-\sigma(5/2^+;2880):\sigma(3/2^+;2940)=3:2 (\sigma(J^{\wedge}):\sigma(J_v)=L+1:L)$ c.f. $\sigma(3/2^-;2625):\sigma(1/2^-;2595)=2:1$ for
- If NOT,
 - Prod. Rates give information on their structure...
 - new states corresponding to $L_{(\lambda)} = 2$ should be observed

Sigma Baryons

non-rel. QM: $H = H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida)

Production Rate

S.H. Kim, A. Hosaka, H.C. Kim, HN, K. Shirotori, PTEP, 103D01, 2014.

C.S. DOES NOT go down at higher L when $q_{eff} > 1 \ GeV/c$ λ modes are excited by a simple mechanism

Production Rate

 t-channel D* EX at a forward angle Production Rates are determined by the overlap of WFs

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

$$I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$$

A: (baryon size parameter)⁻¹

CHARM Spectrometer

Decay Properties

ρ mode (qq) $\Gamma(\Sigma_c \pi) > \Gamma(pD)$

 λ mode [qq] $\Gamma(\Sigma_c \pi) \leq \Gamma(pD)$

Hint in $R(NK)/R(\pi\Sigma)$

PDG Data

- Decay ratios in known hyperons SUGGEST the λ/ρ mode states
- λ/ρ mode ID by productions correlate w/ Decay Ratios
 → to be established

- Hyperon data indicate mode dependence
 → Errors should be improved.
- No data in charmed baryons

Decay Products

- * Decay products can be seen clearly owing to the large acceptance.
- * Decay meas. strongly assists the missing mass spectroscopy.
 - Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^* pD)/\Gamma(\Lambda_c^* \Sigma_c \pi)$.
 - Angular distribution: Spin, Parity

Strange Hyperons

Strange Baryon Spectroscopy Using Missing Mass Techniques

- S=-1 Hyperon by $p(\pi^-, K^*)$, $Y^* \rightarrow pK$, πY
- S=-2 Hyperon by $p(K^-, K^*)$, (K^-, K) , (π, KK^*) , $\Xi^* \rightarrow YK$, $\pi\Xi$ x1000~10000 better statistics than Y_c^*

Hyperon production via $p(\pi^-, K^{*0})X$ Simulation w/4x10¹¹ pions (3 days) $\Lambda(1690)(3/2-) \Sigma(1750)(1/2-)$ $\Lambda(1670)(1/2-) \Sigma(1775)(5/2-)$ Inclusive $\Lambda(1670)(1/2-) \Sigma(1775)(5/2-)$ Inclusive $\Lambda(1670)(1/2-) \Sigma(1775)(5/2-)$ Inclusive $\Lambda(1890)(3/2+) \Sigma(1890)(3/2+)$ $\Lambda(1890)(3/2+)$

•
$$X \rightarrow \pi^+ \Sigma^-$$
 decay
- π^+ tagged, Missing " Σ " gated

Strange Baryons

I = 1 only

I = 0, 1

Contribution of $\Sigma(1385)$ can be subtracted to extract the $\Lambda(1405)$ amplitude.

High-res., High-momentum Beam Line

- High-intensity secondary Pion beam
 >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: ∆p/p~0.1%

Intense K beams are available w/ a good KID counter.

* Sanford-Wang:15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

Ξ Baryon Spectroscopy w/ the High-p Secondary Beam

Lol submitted by M. Naruki and K. Shirotori

• Sizable yields are expected for a month.

Measured Ξ (PDG)

	Threshold		JP	rati ng	Width [MeV]	→Ξπ [%]	→ΛK [%]	→ΣK [%]	
		三(2500)	??	1*	150?				
		三(2370)	??	2*	80?				Ω K~9±4
	$\Omega \overline{K}$ (2166)	王(2250)	??	2*	47+-27?				
		三(2120)	??	$1^*_{\Sigma \overline{K}}$	25?				
* <i>स</i> (1878)	$\Sigma \overline{K}^*(1083)$	Ξ(2030)	>=5/2?	3*	20 ⁺¹⁵ -5	small	~20	~80	Why Σ K?
	$\Delta \overline{K}^{*}(1908)$	三(1950)	??	3*	60+-20	seen	seen		
	(1000)	三(1820)	3/2-	3*	24 ⁺¹⁵ ₋₁₀	small	Large	Small	
Σ*π(1665)	$\Sigma \overline{K}$ (1685)	三(1690)	??	3*	<30	seen	seen	seen	
	$\Lambda \overline{K}$ (1610)	三(1620)	??	1*	20~40?				
		Ξ(1530)	3/2+	4*	19	100			
	三元(1450)								

μ)

✓ Most of spins/parities have NOT been determined yet.
 ✓ Why the Ξ* -> πΞ decay seems to be suppressed?
 ✓ expected to reflect QQq configuration.

Summary

- 1. Quark-diquark structure of heavy baryons
 - Mass spectrum, Production Rate, and Decay Branching ratio
 - Information to access "wave function" of quark/diquark in baryons
- 2. Systematic studies with different flavors may help to understand the light baryon system
 - Meson-baryon coupling may modify mass spectrum/width
 - Relation btw charmed and strange baryons are useful.
- 3. A general purpose spectrometer at the J-PARC High-p BL
 - CHARM spectrometer will open a new platform to study hadron physics.
 - Cooperative efforts of potential users at the High-p BL are of essential importance to push forward this field.