Leptoproduction of pions and the pion-induced exclusive Drell-Yan process

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg KEK, Tsukuba, March 2015

Outline:

- Introduction: handbag approach, GPDs, subprocess amplitudes
- Summary of analyses of hard exclusive processes
- Analysis of pion leptoproduction (the pion pole and transversity)
- The exclusive Drell-Yan process $\pi^- p \rightarrow l^+ l^- n$
- Summary

Hard exclusive scattering within the handbag approach

rigorous proofs of collinear factorization in generalized Bjorken regime: for $\gamma_L^* \to V_L(P)$ and $\gamma_T^* \to \gamma_T$ amplitudes $(Q^2, W \to \infty, x_{Bj} \text{ fixed})$ Radyushkin, Collins et al, Ji-Osborne

hard subprocesses

 $\gamma^* g \to V g ,$ $\gamma^* q \to V(P, \gamma) q$

and GPDs and meson w.f. (encode the soft physics)

$$\mathcal{M} \sim \int_{-1}^{1} dx \,\mathcal{H}(x,\xi,Q^2,t=0)K(x,\xi,t)$$
$$d\sigma/dt \sim |\mathcal{M}|^2 + \mathcal{O}(1/Q^2)$$

power corrections are theoretical not under control

Exp: strong power corrections from γ_T^* and $\gamma_L^* \to V_L(P)$

GPDs – a reminder

D. Müller et al (94), Ji(97), Radyushkin (97)

properties:

reduction formula $H^q(\bar{x}, \xi = t = 0) = q(\bar{x}), \ \widetilde{H}^q \to \Delta q(\bar{x}), \ H^q_T \to \delta^q(\bar{x})$ sum rules (proton form factors): $F_1^q(t) = \int d\bar{x} H^q(\bar{x}, \xi, t), \ F_1 = \sum e_q F_1^q$ $E \to F_2, \ \widetilde{H} \to F_A, \ \widetilde{E} \to F_P$

polynomiality, universality, evolution, positivity constraints Ji's sum rule $J_q = \frac{1}{2} \int_{-1}^{1} d\bar{x} \, \bar{x} \left[H^q(\bar{x}, \xi, t = 0) + E^q(\bar{x}, \xi, t = 0) \right]$ FT $\Delta \rightarrow \mathbf{b} \ (\Delta^2 = -t)$: information on parton localization in trans. position space

Parametrizing the GPDs

double distribution ansatz (Mueller et al (94), Radyushkin (99))

$$K^{i}(x,\xi,t) = \int_{-1}^{1} d\rho \int_{-1+|\rho|}^{1-|\rho|} d\eta \,\delta(\rho+\xi\eta-x) \,K^{i}(\rho,\xi=0,t) w_{i}(\rho,\eta) + D_{i} \,\Theta(\xi^{2}-\bar{x}^{2})$$

weight fct $w_i(\rho, \eta) \sim [(1 - |\rho|)^2 - \eta^2]^{n_i}$ $(n_g = n_{sea} = 2, n_{val} = 1, \text{ generates } \xi \text{ dep.})$ zero-skewness GPD $K^i(\rho, \xi = 0, t) = k^i(\rho) \exp [(b_{ki} + \alpha'_{ki} \ln (1/\rho))t]$ $k = q, \Delta q, \delta^q$ for H, \widetilde{H}, H_T or $N_{ki}\rho^{-\alpha_{ki}(0)}(1 - \rho)^{\beta_{ki}}$ for $E, \widetilde{E}, \overline{E}_T$ Regge-like t dep. (for small -t reasonable appr.)

advantages: polynomiality and reduction formulas automatically satisfied H_{val} , E_{val} and \tilde{H}_{val} at $\xi = 0$ from analysis of form factors (sum rules) positivity bounds respected Diehl et al(04), Diehl-K (13)

D-term neglected

The subprocess amplitude for DVMP

mod. pert. approach - quark trans. momenta in subprocess (emission and absorption of partons from proton collinear to proton momenta) transverse separation of color sources \implies gluon radiation

Sudakov factor Sterman et al(93) $S(\tau, \mathbf{b}_{\perp}, Q^2) \propto \ln \frac{\ln (\tau Q/\sqrt{2}\Lambda_{\rm QCD})}{-\ln (b_{\perp}\Lambda_{\rm QCD})} + \text{NLL}$ resummed gluon radiation to NLL $\Rightarrow \exp [-S]$ provides sharp cut-off at $b_{\perp} = 1/\Lambda_{\rm QCD}$

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

 \Rightarrow asymp. fact. formula (lead. twist) for $Q^2 \rightarrow \infty$

 $\mathcal{H}^{M}_{0\lambda,0\lambda} = \int d\tau d^{2}b_{\perp} \,\hat{\Psi}_{M}(\tau, -\mathbf{b}_{\perp}) \, e^{-S} \hat{\mathcal{F}}_{0\lambda,0\lambda}(\bar{x}, \xi, \tau, Q^{2}, \mathbf{b}_{\perp})$

 $\hat{\Psi}_M \sim \exp[\tau \bar{\tau} b_{\perp}^2 / 4 a_M^2]$ LC wave fct of meson $\hat{\mathcal{F}}$ FT of hard scattering kernel e.g. $\propto 1/[k_{\perp}^2 + \tau(\bar{x} + \xi)Q^2/(2\xi)] \Rightarrow$ Bessel fct

Sudakov factor generates series of power corr. $\sim (\Lambda_{\rm QCD}^2/Q^2)^n$ from intrinsic k_{\perp} in wave fct: series $\sim (a_M Q)^{-n}$

What has been done?

- analysis of FF (DFJK04, update: Diehl-K 1302.4604) using CTEQ6 (ABM11) PDFs, fixes H, E, \widetilde{H} for valence quarks
- analysis of $d\sigma_L/dt$ for ρ^0 and ϕ production Goloskokov-K, hep-ph/0611290 data from H1, ZEUS, E665, HERMES for $Q^2 \gtrsim 3 \,\mathrm{GeV}^2$ and $W \gtrsim 4 \,\mathrm{GeV}$ ($\xi \lesssim 0.1$, $-t \lesssim 0.5 \,\mathrm{GeV}^2$) fixes H for sea quarks and gluons for given H^{val} (E negligible, others don't contr.) update with ABM11 required
- analysis of π^+ production, Goloskokov-K, 0906.0460 $d\sigma/dt$ and A_{UT} data from HERMES ($W \simeq 4 \,\text{GeV}, Q^2 \simeq 2 - 5 \,\text{GeV}^2$) evidence for strong contr. from γ_T^* (H_T) fixes \widetilde{H} , pion pole and H_T (no clear signal for $\widetilde{E}_{\text{non-pole}}$)
- SDME and A_{UT} for ρ^0 production HERMES, π^0 cross section and η/π^0 cross section ratio from CLAS (large skewness!), and lattice QCD QCDSF and UKQCD, hep-lat/0612032 hints at strong contributions from $\bar{E}_T = 2\tilde{H}_T + E_T$

Applications

exploiting universality: our set of GPDs allows for parameter free calculations of other hard exclusive reactions (except of possible wave fct effects)

- $u_l p \rightarrow l P p$ Kopeliovich et al (13) V-A structure leads to different combinations of GPDs no data
- timelike DVCS Pire et al (13) no data
- $\gamma^* p \rightarrow \omega p$ Goloskokov-K(14) compared with SDMEs from HERMES(14) (asymmetries will come) prominent role of pion pole
- DVCS K-Moutarde-Sabatie(13)
 compared to data from Jlab, HERMES, H1, ZEUS
 good agreement with small skewness data, less good with Jlab data

Analysis of pion leptoproduction

leading amplitudes for $Q^2 \to \infty$

$$\mathcal{M}_{0+0+} = \frac{e_0}{2}\sqrt{1-\xi^2}\langle \widetilde{H} - \frac{\xi^2}{1-\xi^2}\widetilde{E}\rangle \qquad \mathcal{M}_{0-0+} = e_0\frac{\sqrt{-t'}}{4m}\xi\langle \widetilde{E}\rangle$$

 \widetilde{H} from FF analysis Diehl-K (13) \widetilde{E} neglected (F_P , lattice QCD, π^+)

$$\begin{split} & \mathsf{HERMES(09)}\\ Q^2 \simeq 2.5\,\mathrm{GeV}^2, W = 3.99\,\mathrm{GeV}\\ & \sin\phi_s \; \text{modulation very large}\\ & \text{does not vanish for } t' \to 0\\ & A_{UT}^{\sin\phi_s} \propto \mathrm{Im} \Big[\mathcal{M}_{0-,++}^* \mathcal{M}_{0+,0+} \Big]\\ & \text{n-f. ampl. } \mathcal{M}_{0-,++} \; \text{required} \end{split}$$

CLAS(12) unsep. cross sec. $d\sigma_T + \epsilon d\sigma_L$ $d\sigma_{LT}, d\sigma_{TT}$

How can we model $\mathcal{M}_{0-,++}$ in the handbag?

helicity-non-flip GPDs $H, E, \widetilde{H}, \widetilde{E}$

helicity-flip (transv.) GPDs $H_T, E_T, \widetilde{H}_T, \widetilde{E}_T$

 $\gamma^{*}(+)$ $\gamma^{*}(+)$

lead. twist pion wave fct. $\propto q'\cdot\gamma\gamma_5$ (perhaps including ${f k}_\perp$)

 $\mathcal{M}_{0-,++} \propto t'$

 $\mathcal{M}_{0-,++}\propto \text{const}$

(forced by angular momentum conservation)

The twist-3 pion distr. amplitude

projector
$$q\bar{q} \rightarrow \pi$$
 (3-part. $q\bar{q}g$ contr. neglected) Beneke-Feldmann (01)
 $\sim q' \cdot \gamma \gamma_5 \Phi + \mu_{\pi} \gamma_5 \Big[\Phi_P - \imath \sigma_{\mu\nu} (\dots \Phi'_{\sigma} + \dots \Phi_{\sigma} \partial / \partial \mathbf{k}_{\perp \nu}) \Big]$
definition: $\langle \pi^+(q') \mid \bar{d}(x) \gamma_5 u(-x) \mid 0 \rangle = f_{\pi} \mu_{\pi} \int d\tau e^{iq'x\tau} \Phi_P(\tau)$
local limit $x \rightarrow 0$ related to divergency of axial vector current
 $\implies \mu_{\pi} = m_{\pi}^2 / (m_u + m_d) \simeq 2 \text{ GeV}$ at scale 2 GeV (conv. $\int d\tau \Phi_P(\tau) = 1$)

Eq. of motion:
$$\tau \Phi_P = \Phi_\sigma / N_c - \tau \Phi'_\sigma / (2N_c)$$
solution: $\Phi_P = 1$, $\Phi_\sigma = \Phi_{AS} = 6\tau (1 - \tau)$ Braun-Filyanov (90)

$$H^{
m twist-3}_{0-,++}(t=0)
eq 0$$
, Φ_P dominant, Φ_σ contr. $\propto t/Q^2$

in coll. appr.: $\mathcal{H}_{0-,++}^{\mathrm{twist}-3}$ singular, in \mathbf{k}_{\perp} factorization (m.p.a.) regular

$$\mathcal{M}_{0-++} = e_0 \sqrt{1-\xi^2} \int dx \mathcal{H}_{0-++}^{\text{twist}-3} H_T , \qquad \mathcal{M}_{0+\pm+} = -e_0 \frac{\sqrt{-t'}}{4m} \int dx \mathcal{H}_{0-++}^{\text{twist}-3} \bar{E}_T$$

(suppressed by μ_{π}/Q as compared to $L \to L$ amplitudes)

The pion pole

$$\mathcal{M}_{0+0+} = \frac{e_0}{2}\sqrt{1-\xi^2}\langle \widetilde{H} - \frac{\xi^2}{1-\xi^2}\widetilde{E}\rangle \qquad \mathcal{M}_{0-0+} = e_0\frac{\sqrt{-t'}}{4m}\xi\langle \widetilde{E}\rangle$$

leading amplitudes for $Q^2 \to \infty$

$$\begin{split} \widetilde{E}_{\text{pole}}^{u} &= -\widetilde{E}_{\text{pole}}^{d} = \Theta(|x| \leq \xi) \frac{m f_{\pi} g_{\pi NN}}{\sqrt{2} \xi} \frac{F_{\pi NN}(t)}{m_{\pi}^{2} - t} \Phi_{\pi}(\frac{x + \xi}{2\xi}) \\ \Longrightarrow \frac{d \sigma_{L}^{\text{pole}}}{dt} \sim \frac{-t}{Q^{2}} \Big[\sqrt{2} e_{0} g_{\pi NN} \frac{F_{\pi NN}(t)}{m_{\pi}^{2} - t} Q^{2} F_{\pi}^{\text{pert}}(Q^{2}) \Big]^{2} \\ \text{understimates c.s.(blue l.)} \qquad F_{\pi}^{\text{pert.}} \simeq 0.3 - 0.5 F_{\pi}^{\text{exp.}} \\ (F_{\pi} \text{ measured in } \pi^{+} \text{ electroproduction at Jlab}) \\ \text{Goloskokov-K(09):} \quad F_{\pi}^{\text{pert}} \to F_{\pi}^{\text{exp}} \\ \text{knowledge of the sixties suffices to explain} \\ \pi^{+} \text{ data at small } -t \end{split}$$

(Mankiewicz et al (98), Penttinen et al (99))

Parametrization of H_T and \overline{E}_T

 H_T : transversity PDFs Anselmino et al(09) $\delta^q(x) = N_{H_T}^q \sqrt{x}(1-x) [q(x) + \Delta q(x)]$ DD ansatz parameters: $\alpha'_{H_T} = 0.45 \,\text{GeV}^{-2}$, $b_{H_T} = 0$, $N_{H_T}^{u(d)} = 0.78(-1.01)$ opposite sign for u and d quarks but u larger than dAlternative (favored): normalize to lattice moments QCDSF-UKQCD(05)

 E_T : only available lattice result for moments: QCDSF-UKQCD(06) Large, same sign and almost same size for u and d quarks \bar{E}_T parameterization: $e_T^a = \bar{N}_{e_T}^a e^{b_{e_T} t} x^{-\alpha^{e_T}(t)} (1-x)^{\beta_{e_T}^a}$ parameters: $\alpha_{e_T}(0) = 0.3$, $\alpha'_{e_T} = 0.45 \, {\rm GeV}^{-2}$, $b_{e_T} = 0.5 \, {\rm GeV}^{-2}$, $\beta_{e_T}^{u(d)} = 4(5)$, $\bar{N}_{e_T}^{u(d)} = 6.83(5.05)$,

adjusted to lattice results

Burkardt: related to Boer-Mulders fct $\langle \cos(2\phi) \rangle$ in SIDIS – same pattern

 H_T and \overline{E}_T in pion electroproduction

unseparated (longitudinal, transverse) cross sections π^+ : pion pole and $\propto K^u - K^d$ π^0 : no pion pole and $\propto e_u K^u - e_d K^d$

consider u - d signs: \overline{E}_T same, \widetilde{H}, H_T opposite sign $\implies \widetilde{H}$ and H_T large for π^+ , small for π^0 \overline{E}_T small for π^+ , large for π^0

data: Bedlinsky et al (12) (Large x_B (ξ), only estimates)

 $\pi^- p
ightarrow l^- l^+ n$

the exclusive limit of the Drell-Yan process directly related to leptoproduction of pions - same GPDs

- $\hat{s}-\hat{u}$ crossed subprocess

$$\mathcal{H}^{\pi^- \to \gamma^*}(\hat{u}, \hat{s}) = -\mathcal{H}^{\gamma^* \to \pi^+}(\hat{s}, \hat{u})$$

or for hard scattering kernel $\mathcal{F}^{t.l.}(x,\xi,\mathbf{k}_{\perp}^2,\bar{z}) = \mathcal{F}^{s.l.*}(x,\xi,-\mathbf{k}_{\perp}^2,z)$ equivalent to $Q^2 \rightarrow -Q'^2$ Berger-Diehl-Pire (01): leading-twist, LO analysis of long. cross section (i.e. exploiting asymp. factorization formula)

we know that leading-twist analysis of π^+ production fails with HERMES data by order of magnitude

Therefore ...

a reanalyis of the exclusive Drell-Yan process seems appropriate making use of what we have learned from analysis of pion production

- retaining quark transverse momenta in the subprocess (the MPA)
- treating pion-pole contribution as an OPE term
- take into account transverse photons and transversity GPDs

Goloskokov-K(15) - in preparation

Cross section

$$k$$
 momentum of l^-
$$\tau = Q'^2/(s-m^2)$$

$$\frac{d\sigma}{dtdQ'^2d\cos\theta d\phi} = \frac{3}{8\pi} \left\{ \sin^2\theta \frac{d\sigma_L}{dtdQ'^2} + \frac{1+\cos^2\theta}{2} \frac{d\sigma_T}{dtdQ'^2} + \frac{1+\cos^2\theta}{2} \frac{d\sigma_T}{dtdQ'^2} + \frac{1}{\sqrt{2}} \sin\left(2\theta\right)\cos\phi \frac{d\sigma_{LT}}{dtdQ'^2} + \sin^2\theta\cos\left(2\phi\right)\frac{d\sigma_{TT}}{dtdQ'^2} \right\}$$

$$\frac{d\sigma_L}{dt dQ'^2} = \frac{\alpha_{\rm elm}}{48\pi^2} \frac{\tau^2}{Q'^6} \sum_{\nu'} |\mathcal{M}_{0\nu',0+}|^2 \qquad \frac{d\sigma_T}{dt dQ'^2} = \frac{\alpha_{\rm elm}}{48\pi^2} \frac{\tau^2}{Q'^6} \sum_{\mu=\pm 1,\nu'} |\mathcal{M}_{\mu\nu',0+}|^2$$
$$\frac{d\sigma_{LT}}{dt dQ'^2} = \frac{\alpha_{\rm elm}}{48\pi^2} \frac{\tau^2}{Q'^2} \operatorname{Re} \sum_{\nu'} \mathcal{M}_{0\nu'0+}^* (\mathcal{M}_{+\nu'0+} - \mathcal{M}_{-\nu'0+})$$
$$\frac{d\sigma_{TT}}{dt dQ'^2} = \frac{\alpha_{\rm elm}}{48\pi^2} \frac{\tau^2}{Q'^2} \operatorname{Re} \sum_{\nu'} \mathcal{M}_{+\nu'0+}^* \mathcal{M}_{-\nu'0+}$$

 ϕ integration

$$\frac{d\sigma}{dtdQ'^2d\cos\theta} = \frac{3}{4}\sin^2\theta \frac{d\sigma_L}{dtdQ'^2} + \frac{3}{8}(1+\cos^2\theta)\frac{d\sigma_T}{dtdQ'^2}$$

 $\boldsymbol{\theta}$ integration

$$\frac{d\sigma}{dtdQ'^2} = \frac{d\sigma_L}{dtdQ'^2} + \frac{d\sigma_T}{dtdQ'^2}$$

The time-like Sudakov factor

Sterman et al(93): Sudakov factor in space-like region with sharp cut-off at $b = 1/\Lambda_{\rm QCD}$ time-like Sudakov factor unknown replacement $Q^2 \rightarrow -Q'^2$ leads to unplausible oscillations Magnea-Sterman(90) Gousset-Pire (95): use $Q^2 \rightarrow Q'^2$ (s.l.=t.l.) alternative: use $\Theta(\Lambda_{\rm QCD} - b)$ since, for Q'^2 of interest, wave function $\Psi \sim \exp[\tau \overline{\tau} b^2/(4a_\pi^2)]$ is more important difference considered as part of uncertainties

role of cut-off

$$I = 2\pi \int_{0}^{b_{0}} b db K_{0}(\sqrt{a}Q'b)$$

$$b_{0} \rightarrow \infty: I \rightarrow lim_{\mathbf{k}_{\perp} \rightarrow 0} [aQ'^{2} \pm \mathbf{k}_{\perp}^{2} + i\epsilon]^{-1}$$

$$b_{0} \text{ finite:}$$

$$I = \frac{1}{aQ'^{2}} \left(1 - \sqrt{a}Q'K_{1}(\sqrt{a}Q'b) \right)$$

Results on the longitudinal cross section

 $Q'^2 = 4 \,\mathrm{GeV}^2$ and $s = 20 \,\mathrm{GeV}^2$ solid lines with error bands: full result pion pole, $|\langle \widetilde{H}^{(3)} \rangle|^2$, interference, short dashed: leading-twist contribution time-like pion FF: $Q'^2 |F_{\pi}(Q'^2)| = 0.88 \pm 0.04 \,\mathrm{GeV}^2$ (CLEO, BaBar, $J/\Psi \to \pi^+\pi^-$) phase from disp. rel. Belicka et al(11) for $Q'^2 < 7 \,\mathrm{GeV}^2$ $\delta = 182.6^\circ + 11.2^\circ (Q'^2 - 2 \,\mathrm{GeV}^2) - 1.67^\circ (Q'^2 - 2 \,\mathrm{GeV}^2)^2$ for $Q'^2 \ge 7 \,\mathrm{GeV}^2$: $\delta = 180^\circ$, pQCD result

Results on the transverse cross section

dominated by H_T $\bar{E}_T^u - \bar{E}_T^d$ small $d\sigma_{TT} \leq 0.1 \,\mathrm{pb}/\mathrm{GeV}^4 \Longrightarrow d\sigma_T \sim |< H_T > |^2$

Remarks on processes with time-like virtual photons

- time-like excl. processes difficult to understand theoretically e.g. no satisfactory explanation of time-like elm form factors within pert. QCD
- Drell-Yan process $\pi^- p \rightarrow l^+ l^- X$ large K-factor needed (larger than NLO corr. Sutton et al (92)) now understood as 'threshold logs' $(Q'^2/(x_1x_2s) \rightarrow 1)$ (gluon radiation resummed to NLL Sterman(87), Catani-Trentadue(89)) leading finally to reasonable fits of data and extraction of PDFs for the pion with plausible behavior for $x \rightarrow 1$ Aicher-Schäfer-Vogelsang (11)
- hard exclusive scattering processes with time-like virtual photons no data as yet but predictions time-like DVCS (Pire et al (13)) and $\pi^- p \rightarrow l^+ l^- n$ (in progress) experimental verification of predictions important

Summary

- asymptotia is far away interpretation of data on pion leptoproduction requires strong power corrections from the pion pole and from transverse photons
- within handbag approach $\gamma_T^* \to \pi$ transitions are related to transversity (helicity-flip) GPDs accompanied by a twist-3 pion wave fct.
- making use of what we have learned from pion leptoproduction we are evaluating the long. and transverse cross sections for the exclusive Drell-Yan process
- long. cross section dominated by the pion pole transverse cross section fed by H_T (\bar{E}_T small) Φ -dependence: various interference terms
- t.l. π FF: $l^+l^- \rightarrow \pi^+\pi^-$ (CLEO, BaBar) versus $\pi^-\pi^{+*} \rightarrow l^+l^-$