\[\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture} \]

Stefan Kofler, Peter Kroll\(^1\) and Wolfgang Schweiger

Karl-Franzens-Universität Graz
Institut für Physik

March 15, 2015

\(^1\)University of Wuppertal
The Outline

1. Introduction

2. Reaction Mechanism

3. Results

4. Summary and Outlook

\[
\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture}
\]
Introduction

One important task of QCD is the investigation of the intrinsic structure of hadrons in terms of quark and gluon (parton) fields.
Introduction

One important task of QCD is the investigation of the intrinsic structure of hadrons in terms of quark and gluon (parton) fields.

An important tool to understand the substructure are hard exclusive processes.

- hard scale Q to resolve the hadron substructure
- specific final state $c + d + \ldots$

$\pi^- p \rightarrow D^- \Lambda_c^+$ within the Generalized Parton Picture
Introduction

One important task of QCD is the investigation of the intrinsic structure of hadrons in terms of quark and gluon (parton) fields.

An important tool to understand the substructure are **hard exclusive** processes.

- **hard scale** Q to resolve the hadron substructure
- **specific final state** $c + d + \ldots$

low counting rates in exclusive processes \Rightarrow experiments are very challenging

\[\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture} \]
Introduction

One important task of QCD is the investigation of the intrinsic structure of hadrons in terms of quark and gluon (parton) fields.

An important tool to understand the substructure are hard exclusive processes.

- hard scale Q to resolve the hadron substructure
- specific final state $D^- + \Lambda_c^+$

\[\pi^{-} p \rightarrow D^{-} + \Lambda_c^{+} \]

low counting rates in exclusive processes \Rightarrow experiments are very challenging

$\pi^{-} p \rightarrow D^{-} \Lambda_c^{+}$ within the Generalized Parton Picture
Why should we study $\pi^- p \rightarrow D^- \Lambda_c^+$?

- charmed baryon spectroscopy at J-PARC
 - estimate cross section and spin observables
 - no theoretical study has been performed so far
Why should we study $\pi^- p \rightarrow D^- \Lambda_c^+$?

- charmed baryon spectroscopy at J-PARC
 - estimate cross section and spin observables
 - no theoretical study has been performed so far
 however, for a D^* in the final state
 (Regge-phenomenology motivated approach)
Why should we study $\pi^- p \rightarrow D^- \Lambda^+_c$?

- charmed baryon spectroscopy at J-PARC
 - estimate cross section and spin observables
 - no theoretical study has been performed so far
 however, for a D^* in the final state
 (Regge-phenomenology motivated approach)
 - old AGS-experiment at BNL, gives upper bound of
 - 15 nb for D^-
 - 7 nb for D^{*-}
 for the integrated cross section
Why should we study $\pi^- p \rightarrow D^- \Lambda_c^+$?

- charmed baryon spectroscopy at J-PARC
 - estimate cross section and spin observables
 - no theoretical study has been performed so far
 however, for a D^* in the final state
 (Regge-phenomenology motivated approach)
 - old AGS-experiment at BNL, gives upper bound of
 - 15 nb for D^-
 - 7 nb for D^{*-}
 for the integrated cross section

- further application/test of $p \rightarrow \Lambda_c^+$- transition generalized parton distributions (GPDs) introduced in
 - originally: $\bar{p} p \rightarrow \bar{\Lambda}_c^- \Lambda_c^+$
 - also: $\gamma p \rightarrow \bar{D}^0 \Lambda_c^+$
Why should we study $\pi^- p \rightarrow D^- \Lambda_c^+$?

• In general, production of charmed hadrons is interesting:
 Different models on the market which give different results.

 ⇒ What is the dominant production mechanism?
Double Handbag Mechanism

We use a *handbag* mechanism:

- expected to dominate in the intermediate energy region,
- minimal number of partons take part in the hard scattering,
- used to describe DIS, DVCS, wide-angle CS, TCS, $\bar{p}p$ annihilation into (heavy) baryons/mesons.
Double Handbag Mechanism

We use a *handbag* mechanism:

- expected to dominate in the intermediate energy region,
- minimal number of partons take part in the hard scattering,
- used to describe DIS, DVCS, wide-angle CS, TCS, $\bar{p}p$ annihilation into (heavy) baryons/mesons.

$\pi^- p \rightarrow D^- \Lambda^+_c$ within the Generalized Parton Picture
Process Amplitude

\[\mathcal{M} = FT \langle \Lambda_c^+ | \bar{\Psi}^c \Psi^u | p \rangle \times FT \langle D^- | \bar{\Psi}^u \Psi^c | \pi^- \rangle \times H \]
Process Amplitude

\[M = FT \langle \Lambda_c^+ | \bar{\Psi}^c \Psi^u | p \rangle \times FT \langle D^- | \bar{\Psi}^u \Psi^c | \pi^- \rangle \times H \]

\[\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture} \]

factorization in the sense that

- hard part contains highly virtual partons: \(k_g^2 \geq 4m_c^2 \)
 \(H \) on tree level \(\rightarrow \) 1 Feynman diagram

- hadron matrix elements embody soft scales
 - restricted parton virtualities: \(|k|^2 \) and \(|k^2 - mc^2| \leq \Lambda^2 \)
 - restricted intrinsic parton transverse momenta: \(k_{\perp}/x \leq \Lambda^2 \)
 (\(\Lambda^2 \) of the order of 1 GeV^2)

\(\Rightarrow \) hadrons emit and re-absorb collinear, nearly on-shell partons
Process Amplitude

\[\mathcal{M} = FT \left\langle \Lambda_c^+ \mid \bar{\Psi}^c \Psi^u \mid p \right\rangle \times FT \left\langle D^- \mid \bar{\Psi}^u \Psi^c \mid \pi^- \right\rangle \times H \]

- factorization in the sense that
 - hard part contains highly virtual partons: \(k_g^2 \geq 4m_c^2 \)
 - \(H \) on tree level \(\rightarrow 1 \) Feynman diagram
 - hadronic matrix elements embody *soft scales*
 - restricted parton virtualities: \(|k|^2 \) and \(|k^2 - mc^2| \leq \Lambda^2\)
 - restricted intrinsic parton transverse momenta: \(k_{\perp}/x \leq \Lambda^2 \)
 - \(\Lambda^2 \) of the order of 1 GeV

\[\pi^- p \rightarrow D^- \Lambda_c^+ \] within the Generalized Parton Picture
Generalized Parton Distributions I

\[
\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture}
\]

\[
\text{FT } \langle \Lambda_c^+ : p', \mu' | \bar{\Psi}^c \Psi^u | p : p, \mu \rangle
\]
Generalized Parton Distributions I

- (quark) GPDs: FT of a product of bilocal quark field operators sandwiched between non-diagonal hadronic matrix elements

\[\langle \Lambda_+^+ : p', \mu' | \bar{\psi}^c \gamma^+ \psi^u | p : p, \mu \rangle\]

- \[\bar{\psi}^c \gamma^+ \psi^u : 2 \text{ GPDs}\]
- \[\bar{\psi}^c \gamma^+ \gamma_5 \gamma^+ \psi^u : 2 \text{ GPDs}\]
- \[\bar{\psi}^c i\sigma^{+j} \gamma^+ \psi^u : 4 \text{ GPDs}\]
Generalized Parton Distributions I

- (quark) GPDs: FT of a product of bilocal quark field operators sandwiched between non-diagonal hadronic matrix elements
- parton interpretation in light-cone (LC) quantization (LC-gauge)

\[FT \langle \Lambda^+_c : p', \mu' | \bar{\Psi}^c \Psi^u | p : p, \mu \rangle \]

- \(\bar{\Psi}^c \gamma^+ \Psi^u \) : 2 GPDs
- \(\bar{\Psi}^c \gamma^+ \gamma_5 \Psi^u \) : 2 GPDs
- \(\bar{\Psi}^c i\sigma^{+j} \Psi^u \) : 4 GPDs

\[\pi^- p \rightarrow D^- \Lambda^+_c \] within the Generalized Parton Picture
Generalized Parton Distributions I

- (quark) GPDs: FT of a product of bilocal quark field operators sandwiched between non-diagonal hadronic matrix elements
- parton interpretation in light-cone (LC) quantization (LC-gauge)
- spin structure of the hadrons can be taken into account easily with GPDs

\[\pi^- p \rightarrow D^- \Lambda_c^+ \] within the Generalized Parton Picture
Generalized Parton Distributions II

- $\bar{\Psi}^u \gamma^+ \Psi^c$: 1 GPD
- $\bar{\Psi}^u i\sigma^+ j \Psi^c$: 1 GPD

- Pseudoscalar meson to pseudoscalar meson transition simple: 2 GPDs

$\pi^- p \rightarrow D^- \Lambda^+_c$ within the Generalized Parton Picture
Overlap Representation of GPDs in terms of LCWFs

\[\left| H \right\rangle = \sum_{N,\beta} \Psi_{N,\beta} \left| N, \beta \right\rangle \]
Overlap Representation of GPDs in terms of LCWFs

\[|H\rangle = \sum_{N,\beta} \Psi_{N,\beta} |N, \beta\rangle \]

- properties of heavy hadrons are dominated by heavy valence quark: restriction on valence Fock states a good approximation
- LCWFs are the model input
- simple parton interpretation

\[\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture} \]
Light Cone Wave Functions

\[\pi^- \rightarrow D^- \Lambda_c^+ \] within the Generalized Parton Picture
Light Cone Wave Functions

\[
N_\pi \exp \left[-a^2 \frac{k_{1\perp}^2}{x_a(1-x_a)} \right] \\
N_D \exp \left[-f(x_a) \right] \exp \left[-a^2_D \frac{k_{1\perp}^2}{x_a(1-x_a)} \right]
\]

\[
\Psi_\pi \rightarrow d \Psi_D \\
p \sim |u u d\rangle \\
\Lambda_c^+ \sim |c u d\rangle
\]

\[
N_p \left(1 + 3x_a \right) \exp \left[-a_p^2 \sum \frac{k_{1\perp i}^2}{x_i} \right] \\
N_\Lambda \exp \left[-f(x_a) \right] \exp \left[-a_\Lambda^2 \sum \frac{k_{1\perp i}^2}{x_i} \right]
\]

Light Cone Wave Functions

\[N_\pi \exp \left[- a_\pi^2 \frac{k_\perp^2}{x_a(1 - x_a)} \right] \]

\[N_D \exp \left[- f(x_a) \right] \exp \left[- a_D^2 \frac{k_\perp^2}{x_a(1 - x_a)} \right] \]

\[\begin{aligned} & N_p \left(1 + 3x_a \right) \exp \left[- a_p^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \quad \text{Feldmann T. and Kroll P., Euro. Phys. J. C12 (2000)} \\
& N_\Lambda \exp \left[- f(x_a) \right] \exp \left[- a_\Lambda^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \quad \text{Bolz J. and Kroll P., Z. Phys. A 356 (1996)} \end{aligned} \]

\[\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture} \]
Light Cone Wave Functions

\[N_\pi \exp \left(-a_\pi^2 \frac{k^2_{\perp}}{x_a(1-x_a)} \right) \]

\[N_D \exp \left(-f(x_a) \right) \exp \left(-a_D^2 \frac{k^2_{\perp}}{x_a(1-x_a)} \right) \]

- soft LCWF

- Gaussian exponential for intrinsic transverse mom.

\[N_p \left(1 + 3x_a \right) \exp \left[-a_p^2 \sum \frac{k^2_{\perp i}}{x_i} \right] \]

\[N_\Lambda \exp \left[-f(x_a) \right] \exp \left[-a_\Lambda^2 \sum \frac{k^2_{\perp i}}{x_i} \right] \]

\[\pi^- p \rightarrow D^- \Lambda_c^+ \] within the Generalized Parton Picture
Light Cone Wave Functions

\[N_\pi \exp \left[-a_\pi^2 \frac{k_\perp^2}{x_a(1-x_a)} \right] \]

\[N_D \exp \left[-f(x_a) \right] \exp \left[-a_D^2 \frac{k_\perp^2}{x_a(1-x_a)} \right] \]

- soft LCWF

- Gaussian exponential for intrinsic transverse mom.

- \(L = 0 \) -> reduces # of GPDs

\[N_p \left(1 + 3x_a \right) \exp \left[-a_p^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \]

\[N_\Lambda \exp \left[-f(x_a) \right] \exp \left[-a_\Lambda^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \]

Light Cone Wave Functions

\[N_\pi \exp \left[-a_\pi^2 \frac{k_\perp^2}{x_a(1-x_a)} \right] \]

- soft LCWF

\[N_D \exp \left[-f(x_a) \right] \exp \left[-a_D^2 \frac{k_\perp^2}{x_a(1-x_a)} \right] \]

- Gaussian exponential for intrinsic transverse mom.

- \(L=0 \rightarrow \) reduces \# of GPDs

\[N_p \left(1 + 3x_a\right) \exp \left[-a_p^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \]

- QCD sum rules for \(\Lambda_b \) \((BB \ mass \ exp.) \)

- harmonic oscillator on the LC \((KK \ mass \ exp.) \)

\[N_\Lambda \exp \left[-f(x_a) \right] \exp \left[-a_\Lambda^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \]

Light Cone Wave Functions

\[N_\pi \exp \left[-a_\pi^2 \frac{k_\perp^2}{x_a(1-x_a)} \right] \]

\[N_D \exp \left[-f(x_a) \right] \exp \left[-a_D^2 \frac{k_\perp^2}{x_a(1-x_a)} \right] \]

- soft LCWF
- Gaussian exponential for intrinsic transverse mom.
- \(L=0 \) -> reduces # of GPDs

\[\psi_\pi \rightarrow |u \ d\rangle \]
\[u \rightarrow g \rightarrow c \]
\[p \sim |u \ u \rangle \]
\[\psi_D \rightarrow |\bar{c} \ d\rangle \]
\[\Lambda_c^+ \sim |c \ u \ d\rangle \]

\[N_p \left(1 + 3 x_a \right) \exp \left[-a_p^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \]

\[N_{\Lambda} \exp \left[-f(x_a) \right] \exp \left[-a_{\Lambda}^2 \sum \frac{k_{\perp i}^2}{x_i} \right] \]

- QCD sum rules for \(\Lambda_b \) (BB mass exp.)
- harmonic oscillator on the LC (KK mass exp.)

\(\pi^- p \rightarrow D^- \Lambda_c^+ \) within the Generalized Parton Picture
Light Cone Wave Functions

\[N_\pi \exp \left[- \alpha_\pi^2 \frac{k^2}{x_a(1 - x_a)} \right] \quad N_D \exp \left[- f(x_a) \right] \exp \left[- \alpha_D^2 \frac{k^2}{x_a(1 - x_a)} \right] \]

- soft LCWF
- Gaussian exponential for intrinsic transverse mom.
- \(L = 0 \) -> reduces # of GPDs

\[N_p \left(1 + 3 x_a \right) \exp \left[- \alpha_p^2 \sum \frac{k_{i}^2}{x_i} \right] \quad N_\Lambda \exp \left[- f(x_a) \right] \exp \left[- \alpha_\Lambda^2 \sum \frac{k_{i}^2}{x_i} \right] \]

- QCD sum rules for \(\Lambda_b \) (BB mass exp.)
- harmonic oscillator on the LC (KK mass exp.)

Every LCWF depend on 2 parameters:
- normalization constant \(N \)
- oscillator parameter \(a \)

- proton and pion LCWF: good constraints at hand
- Lambda and D LCWF: parameters fixed by physical conditions, e.g. valence Fock state prob., decay constant,...

\[\pi^- p \rightarrow D^- \Lambda_c^+ \text{ within the Generalized Parton Picture} \]
We have all pieces of our process amplitudes determined:

- hard partonic subprocess. . . Feynman diagram
- non-perturbative effects. . . contained in GPDs, which are modeled by an overlap of LCWFs

Let‘s have a look at our results.
Estimate of Differential Cross Section

• diff. cross section (nb) vs. $\cos \theta$ for different values of Mandelstam s

• in the order of 1 nb
 - BB mass exp. produces a larger cross section

• shaded band: varied parameters of Λ/D LCWF

$\pi^- p \rightarrow D^- \Lambda_c^+$ within the Generalized Parton Picture
Estimate of Integrated Cross Section

- integrated cross section (nb) vs. Mandelstam s
Estimate of Integrated Cross Section

- integrated cross section (nb) vs. Mandelstam s
- in the order of 1 nb
 (D^* in the final state)

$\pi^- p \rightarrow D^- \Lambda_c^+$ within the Generalized Parton Picture
Estimate of Integrated Cross Section

- integrated cross section (nb) vs. Mandelstam s
- in the order of 1 nb
- AGS-experiment: upper bound of 15 nb for integrated cross section
Spin Correlations

- 2 depolarisation observables for different Mandelstam s values vs. $\cos(\theta)$
Spin Correlations

- 2 depolarisation observables for different Mandelstam s values vs. $\cos(\theta)$
- Polarisation transfer from the proton to the Λ_c^+:
 - L ... longitudinal
 - S ... sideways
Spin Correlations

- 2 depolarisation observables for different Mandelstam s values vs. $\cos(\theta)$
- Polarisation transfer from the proton to the Λ_c^+:
 - L … longitudinal
 - S … sideways
- Mild energy dependence
- Approximately independent of GPDs
 ⇒ characteristic for handbag mechanism

$\pi^- p \rightarrow D^- \Lambda_c^+$ within the Generalized Parton Picture
Exclusive Production of Charmed Hadrons

Within the **collinear fac. approach**, other reactions producing charmed hadrons have been investigated:

- integrated cross section in the order of 1 nb

 \[\bar{p} \ p \rightarrow \bar{\Lambda}_c^- \ \Lambda_c^+ \]

 \[\bar{p} \ p \rightarrow D^0 \bar{D}^0 \]

- integrated cross section in the order of < 1 nb

 \[\gamma \ p \rightarrow \bar{D}^0 \ \Lambda_c^+ \]

\[\pi^- \ p \rightarrow D^- \ \Lambda_c^+ \] within the Generalized Parton Picture
Exclusive Production of Charmed Hadrons

Within the **collinear fac. approach**, other reactions producing charmed hadrons have been investigated:

- integrated cross section in the order of 1 nb

 \[\bar{p} p \rightarrow \bar{\Lambda}_c^- \Lambda_c^+ \]

- integrated cross section in the order of \(< 1 \text{ nb}\)

 \[\bar{p} p \rightarrow D^0\bar{D}^0 \]

Other approaches would be

- Regge models,

- hadronic exchange models.
Exclusive Production of Λ_c pairs

Different theoretical descriptions of $\bar{p}p \rightarrow \bar{\Lambda}_c^– \Lambda_c^+$ are controversial!
Exclusive Production of Λ_c pairs

Different theoretical descriptions of $\bar{p}p \rightarrow \bar{\Lambda}_c^- \Lambda_c^+$ are controversial!

- handbag mechanism
- charm produced perturbatively
- transition GPDs unknown -> modeling

$pQCD$

$\pi^- p \rightarrow D^- \Lambda_c^+$ within the Generalized Parton Picture
Exclusive Production of Λ_c pairs

Different theoretical descriptions of $\bar{p}p \rightarrow \bar{\Lambda}_c^- \Lambda_c^+$ are controversial!

- pQCD
 - handbag mechanism
 - charm produced perturbatively
 - transition GPDs unknown -> modeling

- hadronic models
 - charm produced non-perturbatively via H exchange (Reggeon or non Reggeon)
 - strong coupling at vertex unknown:
 - SU(4)$_f$ symmetry
 - QCD sum rules

$\pi^- p \rightarrow D^- \Lambda_c^+$ within the Generalized Parton Picture
Exclusive Production of Λ_c pairs

Different theoretical descriptions of $\bar{p}p \rightarrow \bar{\Lambda}_c^- \Lambda_c^+$ are controversial!

pQCD
- handbag mechanism
- charm produced perturbatively
- transition GPDs unknown -> modeling

hadronic models
- charm produced non-perturbatively via H exchange (Reggeon or non Reggeon)
- strong coupling at vertex unknown:
 - SU(4)$_f$ symmetry
 - QCD sum rules

\[\pi^- p \rightarrow D^- \Lambda_c^+ \] within the Generalized Parton Picture
Exclusive Production of D meson pairs

Different theoretical descriptions of $\bar{p}p \rightarrow \bar{D}^0 D^0$ are also controversial!
Exclusive Production of D meson pairs

Different theoretical descriptions of $\bar{p}p \rightarrow D^0 D^0$ are also controversial!

-手提袋机制
-标量二夸克模型

pQCD

hadronic models

$\pi^- p \rightarrow D^- \Lambda^+_c$ within the Generalized Parton Picture
Exclusive Production of D meson pairs

Different theoretical descriptions of $\bar{p}p \rightarrow D^0 D^0$ are also controversial!

- pQCD

- hadronic models

- handbag mechanism
- scalar diquark model

Also a difference of 2-3 orders of magnitude!

$\pi^- p \rightarrow D^- \Lambda_c^+$ within the Generalized Parton Picture
Can we understand these differences?

Our model:

- $SU(4)_f$ symmetry breaking on the level of the wave function
 e.g. $p \rightarrow \Lambda_c$ overlaps considerably diminished compared to $p \rightarrow \Lambda$
 $\Rightarrow \sigma$ differs in 3 orders of magnitude $\rightarrow O(nb)$

Can we understand these differences?

Our model:

- $SU(4)_f$ symmetry breaking on the level of the wave function
 e.g. $p \to \Lambda_c$ overlaps considerable diminished compared to $p \to \Lambda$
 $\Rightarrow \sigma$ differs in 3 orders of magnitude $\to \mathcal{O}(nb)$

Unreggeized model:

\[
\sum_{M=D,D^*} g^2_{N,\Lambda_c,M} \frac{F^2_{N,\Lambda_c,M}}{t-m^2_M} \ 	ext{SU}(4)_f \text{ symmetry}
\]

vertex form factor

cutoff mass: $m_M + 1 \text{ GeV}$

$\sigma(\bar{p}p \to \bar{\Lambda}\Lambda) \approx \frac{m^2_{M_s}}{m^2_{M_c}} \approx \frac{1}{4}$

$\frac{\sigma(\bar{p}p \to \bar{\Lambda}_c\Lambda_c)}{\sigma(\bar{p}p \to \bar{\Lambda}\Lambda)} \approx 16$

$\pi^- p \to D^- \Lambda_c^+$ within the Generalized Parton Picture
Can we understand these differences?

Reggeized model:

\[
\sim \left(\frac{s}{s_0} \right)^{\alpha_{D^*}(t)-1}
\]

- $SU(4)_f$ breaking in the scale parameter (and Regge residues)
- different Regge parameters lead to different results in charm/strange suppression

for $\bar{p}p \rightarrow \bar{\Lambda}_c \Lambda$: difference of 2 order of magnitude as compared to pQCD
for $\pi^- p \rightarrow D^- \Lambda_c^+$: same order of magnitude as compared to pQCD
Can we understand these differences?

Reggeized model:

\[\sim \left(\frac{s}{s_0} \right)^{\alpha_D(t)-1} \]

- $SU(4)_f$ breaking in the scale parameter (and Regge residues)
- different Regge parameters lead to different results in charm/strange suppression

for $\bar{p}p \to \bar{\Lambda}_c \Lambda$: difference of 2 order of magnitude as compared to pQCD
for $\pi^- p \to D^- \Lambda_c^+$: same order of magnitude as compared to pQCD

Summary:

- Different models lead to different predictions.
- Differences in predictions up to 3 orders of magnitude.

Only the experiment can decide.
Interesting and excited times are ahead of us.
Summary and Outlook

- presented you a benchmark calculation for
 \[\pi^- p \rightarrow D^- \Lambda_c^+ \]

Outlook:
- \(D^*^- \Lambda_c^+ \) meson in the final state
- NLO calculation of hard part
Summary and Outlook

• presented you a benchmark calculation for

\[\pi^- p \rightarrow D^- \Lambda_c^+ \]

• the process is factorized into
 - hard partonic subprocess
 - hadronic matrix elements: parameterized by GPDs

Outlook:

• \(D^* - \Lambda_c \) meson in the final state
• NLO calculation of hard part

Thank you very much for your attention.
Summary and Outlook

- presented you a benchmark calculation for
 \[\pi^- p \rightarrow D^- \Lambda_c^+ \]

- the process is factorized into
 - hard partonic subprocess
 - hadronic matrix elements: parameterized by GPDs

- GPDs modeled by an overlap of LCWFs

\(\pi^- p \rightarrow D^- \Lambda_c^+ \) within the Generalized Parton Picture
Summary and Outlook

• presented you a benchmark calculation for

\[\pi^- p \rightarrow D^- \Lambda^+_c \]

• the process is factorized into
 - hard partonic subprocess
 - hadronic matrix elements: parameterized by GPDs

• GPDs modeled by an overlap of LCWFs

• estimation for integrated cross section and depolarisation observables
 - integrated cross section of the order of 1 nb
 - spin observables characteristic for handbag mechanism

Outlook:

• \(D^- \Lambda^+_c \) meson in the final state

• NLO calculation of hard part

Thank you very much for your attention.
Summary and Outlook

- presented you a benchmark calculation for
 \[\pi^- p \rightarrow D^- \Lambda_c^+ \]

- the process is factorized into
 - hard partonic subprocess
 - hadronic matrix elements: parameterized by GPDs

- GPDs modeled by an overlap of LCWFs

- estimation for integrated cross section and depolarisation observables
 - integrated cross section of the order of 1 nb
 - spin observables characteristic for handbag mechanism

- more details can be found in
 (to appear in Phys.Rev.D)
Summary and Outlook

• presented you a benchmark calculation for
 \[\pi^- p \rightarrow D^- \Lambda_c^+ \]

• the process is factorized into
 - hard partonic subprocess
 - hadronic matrix elements: parameterized by GPDs

• GPDs modeled by an overlap of LCWFs

• estimation for integrated cross section and depolarisation observables
 - integrated cross section of the order of 1 nb
 - spin observables characteristic for handbag mechanism

• more details can be found in
 (to appear in Phys.Rev.D)

Outlook:

• \(D_L^{*-} \) meson in the final state

• NLO calculation of hard part
Summary and Outlook

- presented you a benchmark calculation for
 \[\pi^- p \rightarrow D^- \Lambda_c^+ \]

- the process is factorized into
 - hard partonic subprocess
 - hadronic matrix elements: parameterized by GPDs

- GPDs modeled by an overlap of LCWFs

- estimation for integrated cross section and depolarisation observables
 - integrated cross section of the order of 1 nb
 - spin observables characteristic for handbag mechanism

- more details can be found in
 (to appear in Phys.Rev.D)

Outlook:

- \(D_L^{*-} \) meson in the final state
- NLO calculation of hard part

Thank you very much for your attention.