Plan for a proposal in high-energy hadron physics at J-PARC

Wen-Chen Chang, Takahiro Sawada (Academia Sinica)
Jen-Chieh Peng (UIUC)
Shunzo Kumano, Shinya Sawada (KEK)
Kazuhiro Tanaka (Juntendo)
Outline

• Uniqueness of hadron physics studied at HiPBL of J-PARC

• Physics Processes under consideration:
 • Drell-Yan process
 • Hard exclusive process
 • Charm production process

• Feasibility study of exclusive Drell-Yan process in E50 spectrometer

• Summary & Questions
J-PARC High-momentum Beam Line (Hi-P BL)

- High-intensity secondary Pion beam
- High-resolution beam: $\Delta p/p \sim 0.1\%$

![Diagram of J-PARC Hi-P BL](image)
J-PARC High-momentum Beam Line
(Hi-P BL)

- High-intensity secondary Pion beam
- High-resolution beam: $\Delta p/p \sim 0.1\%$

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m
KEK theory center workshop on
Hadron physics with high-momentum hadron beams at J-PARC in 2013
Kobayashi Hall, 1st Floor, Kenkyu-Honkan (15th, 18th)
Seminar Hall, 1st Floor, 3rd building (16th, 17th)
January 15 – 18, 2013, KEK, Tsukuba, Japan
Workshops

<table>
<thead>
<tr>
<th>Workshop</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini workshop on “Structure and productions of charmed baryons II”</td>
<td>Aug.7–9, 2014</td>
</tr>
<tr>
<td>Workshop on High-energy QCD and nucleon structure</td>
<td>March 7–8, 2014</td>
</tr>
<tr>
<td>KEK theory center workshop on J-PARC hadron physics in 2014</td>
<td>Feb. 10–12, 2014</td>
</tr>
<tr>
<td>Hadron-structure physics at J-PARC and related topics</td>
<td>March 18, 2013</td>
</tr>
<tr>
<td>Heavy Quark Hadrons at J–PARC 2012 (partly in English)</td>
<td>June.25–29, 2012</td>
</tr>
<tr>
<td>Future Prospects of Hadron Physics at J–PARC and Large Scale Computational Physics (program, slides, photo, participant list)</td>
<td>Feb. 9–11, 2012</td>
</tr>
</tbody>
</table>
Uniqueness of hadron physics studied at HiPBL of J-PARC

- The beam energy of hadrons at J-PARC at 5-15 GeV ($\sqrt{s} = 3 - 5.5$ GeV) might be most ideal for studying the **hard exclusive processes** and discerning the quark-hadron transition in the strong interaction.
 - Valance-like partonic degrees of freedom of hadrons could be discerned, compared to the collisions at low-energy regime.
 - Reasonably large cross sections, compared to those at higher energies.
Constituent-Counting Rule in Hard Exclusive Process

Kawamura et al., PRD 88, 034010 (2013)

\[\frac{d\sigma}{dt}(a + b \rightarrow c + d) = \frac{1}{s^{n-2}} f(\theta_{CM}) \quad n = n_a + n_b + n_c + n_d \]

\[n = 1 + 3 + 2 + 3 = 7 \]
\[\gamma + p \rightarrow \pi^+ + n \]

\[n = 2 + 3 + 2 + 3 = 8 \]
\[\pi^- + p \rightarrow K^0 + \Lambda \]
Physics Processes

- **Drell-Yan process**
 - Inclusive pion-induced Drell-Yan:
 - $u/d(x)$ at large x
 - Violation of Lam-Tung relation, BM functions
 - Pion PDF and DA
 - Exclusive pion-induced Drell-Yan
 - GPD and TDA of proton
 - Pion DA

- **Hard exclusive production process**
 - Exclusive pion-N Lambda(1405) production
 - Valence quark structure of Lambda(1405)

- **Charm production process**
 - Inclusive pion-N J/psi production: J/psi production mechanism
 - Exclusive pion-N J/psi production: Intrinsic charm?
 - Exotic charmed baryons
Quark and Gluon Wigner Phase-Space Distributions in Protons

Wigner Distribution
\[W(\vec{r}, x, \vec{k}_T) \]

\[\int d\vec{r} \]
\[\int e^{i\vec{q} \cdot \vec{r}} d\vec{r} d\vec{k}_T \]
\[\xi = q^z / 2E_q, \quad t = -\vec{q}^2 \]

Transverse Momentum Dependent PDF
\[f(x, \vec{k}_T) \]

Generalized Parton Distr.
\[F(x, \xi, t) \]

PDF
\[f(x) \]

Form Factors
\[F_1(t), F_2(t) \]

Ji, PRL91, 062001 (2003)
Light Antiquark Flavor Asymmetry: Drell-Yan Experiments with Proton Beam

- Naïve Assumption: \(\bar{d}(x) = \bar{u}(x) \)
- NMC (Gottfried Sum Rule):
 \[\int_0^1 [\bar{d}(x) - \bar{u}(x)] \, dx \neq 0 \]
- NA51 (Drell-Yan, 1994):
 \(\bar{d} > \bar{u} \) at \(x = 0.18 \)
- E866/NuSea (Drell-Yan, 1998):
 \(\frac{\bar{d}(x)}{\bar{u}(x)} \) for \(0.015 \leq x \leq 0.35 \)

\[h_A \rightarrow q \rightarrow T \]
\[h_B \rightarrow q^* \rightarrow l \]
\(\bar{d}(x)/\bar{u}(x) \) Measured by FNAL E906/SeaQuest Experiment

\[x_B x_T = \frac{M}{s}; \text{ smaller } s, \text{ larger } x_T \]

- Unpolarized Drell-Yan using 120 GeV proton beam from Main Injector
- \(^1\)H, \(^2\)H, and nuclear targets

\[(\bar{d}(x) / \bar{u}(x)) \text{ up to } x_T \sim 0.45 \]
\bar{d} / \bar{u} at large x

Advange of relatively low beam energy

J-PARC Proposal P-04 (Peng and Sawada)
50-GeV proton beam

10^{12} protons per spill (3 s)
50-cm long LH_2 / LD_2 targets
60-day runs for each targets
assuming 50% efficiency
Ratios of $d(x)/u(x)$ at large x?

\[|p\rangle \uparrow = \frac{1}{\sqrt{2}} u \uparrow (ud)_{s=0,s_z=0} + \frac{1}{\sqrt{18}} u \uparrow (ud)_{s=1,s_z=0} - \frac{1}{3} u \downarrow (ud)_{s=1,s_z=1} \]

\[-\frac{1}{3} d \uparrow (uu)_{s=1,s_z=0} + \frac{\sqrt{2}}{3} d \downarrow (uu)_{s=1,s_z=1} \]

1) SU(6) symmetry

\[\frac{d}{u} = \frac{1}{2} \quad \frac{F_2^n}{F_2^p} = \frac{2}{3} \]

2) Dominance of $S = 0$ diquark configurations (Close, Carlitz)

Ignoring terms with $S = 1$ diquarks, then

\[\frac{d}{u} = 0 \quad \frac{F_2^n}{F_2^p} = \frac{1}{4} \]

2) Dominance of $S_Z = 0$ diquark configurations (Farrar, Jackson)

Ignoring terms with $S_Z = 1$ diquarks, then

\[\frac{d}{u} = \frac{1}{5} \quad \frac{F_2^n}{F_2^p} = \frac{3}{7} \]
How to make a precise measurement of $d(x) / u(x)$?

1) “spectator tagging” (BONUS experiment)

2) “Super ratio $^3\text{He}/^3\text{H}” (Marathon experiment)

- Extract F_2^n/F_2^p from ratio of measured $^3\text{He}/^3\text{H}$ structure functions

$$\frac{F_2^n}{F_2^p} = \frac{2R - \frac{F_2^3\text{He}}{F_2^3\text{H}}}{2\frac{F_2^3\text{He}}{F_2^3\text{H}} - R}$$
Ratios of $d/u(x)$ at large x by pion-induced Drell-Yan processes

• At large x_1 and x_2:
 $\sigma_{DY}(\pi^- p) \sim 4\bar{u}^\pi (x_1)u^p(x_2)$
 $\sigma_{DY}(\pi^- n) \sim 4\bar{u}^\pi (x_1)d^p(x_2)$ \textbf{Deuterium target}
 $\sigma_{DY}(\pi^+ p) \sim \bar{d}^{\pi^+} (x_1)d^p(x_2)$

• With deuterium target and spectator tagging:
 $\frac{\sigma_{DY}(\pi^- n)}{\sigma_{DY}(\pi^- p)} \sim \frac{4\bar{u}^\pi (x_1)d^p(x_2)}{4\bar{u}^\pi (x_1)u^p(x_2)} \sim \frac{d^p(x_2)}{u^p(x_2)}$

• With both π^+ and π^- beams:
 $\frac{\sigma_{DY}(\pi^+ p)}{\sigma_{DY}(\pi^- p)} \sim \frac{\bar{d}^{\pi^+} (x_1)d^p(x_2)}{4\bar{u}^\pi (x_1)u^p(x_2)} \sim \frac{d^p(x_2)}{4u^p(x_2)}$

 \textbf{No nuclear correction for deuteron is needed}
Drell-Yan decay angular distributions

θ and φ are the decay polar and azimuthal angles of the μ⁺ in the dilepton rest-frame

Collins-Soper frame

\[
\frac{d\sigma}{d\Omega} \propto (1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{v}{2} \sin^2 \theta \cos 2\phi)
\]

\[
\propto (W_T (1 + \cos^2 \theta) + W_L (1 - \cos^2 \theta) + W_\Delta \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi)
\]

q\bar{q} annihilation parton model:

\(O(\alpha_s^0) \) \(\lambda=1, \mu=v=0; W_T = 1, W_L = 0 \)

Lam-Tung relation (1978)

Collinear pQCD: \(O(\alpha_s^1) \), \(W_L = 2W_{\Delta\Delta} ; 1 - \lambda - 2v=0 \)
E615 (PRD 39, 92 (1989)):
Higher Twist Effect at large x_π

$\cos \theta$

$0.52 < x_\pi < 0.60$

$0.60 < x_\pi < 0.68$

$0.68 < x_\pi < 0.76$

$0.76 < x_\pi < 0.84$

$0.84 < x_\pi < 0.92$

$0.92 < x_\pi < 1.00$

λ

GJ frame
$4.05 < m_{\mu \nu} < 4.95$ GeV/c^2

- modified Berger–Brodsky
- pure Berger–Brodsky
E615 @ FNAL: Violation of LT Relation

PRD 39, 92 (1989)

252-GeV $\pi^- + W$

$1 - \lambda - 2\nu = 0$

$\cos 2\phi$ modulation at large p_T
Berger and Brodsky (PRL 42, 940, (1979)):
Higher Twist Effect at large x_π

\[
d\sigma \propto (1 + \alpha \cos^2 \theta)
\]

\[
d\sigma \propto (1 - x_\pi)^2 (1 + \cos^2 \theta) + \frac{4x_\pi^2 \langle k_T^2 \rangle}{9m_{\mu\mu}^2} \sin^2 \theta
\]
Brandenburg et al. (PRL 73, 939 (1994)): Pion Distribution Amplitude

\[
\frac{Q^2 \, d\sigma(\pi^- N \rightarrow \mu^+ \mu^- X)}{dQ^2 \, dQ_T^2 \, dx_L \, d\Omega} = \frac{1}{(2\pi)^4} \frac{1}{64} \int_0^1 dx_u \, G_{u/N}(x_u) \int_0^1 dx_{\bar{u}} \, \frac{x_{\bar{u}}}{1 - x_{\bar{u}} + Q_T^2/Q^2} |M|^2 \\
\times \delta(x_L - x_{\bar{u}} + x_{\bar{u}} - Q_T^2 s^{-1}(1 - x_{\bar{u}})^{-1})
\]

\[
M = \int_0^1 dz \, \phi(z, \tilde{Q}^2) T, \quad \times \delta(Q^2 - s x_u x_{\bar{u}} + Q_T^2 (1 - x_{\bar{u}})^{-1}) + \{u \rightarrow \bar{d}, \bar{u} \rightarrow d\}.
\]

Pion distribution amplitude: distribution of LC momentum fractions in the lowest-particle number valence Fock state.

Pion Distribution Amplitude

QCD evolution

\[\varphi_\pi(y, \mu_0^2) \]

\[\varphi_\pi(y, \mu^2) \]

asymptotic-like form = \(6y(1-y)\)

Chernyak-Zhitnitsky (CZ)-like form

Nonlocal QCD sum rules
Sensitivity of Pion DA to λ, μ, ν

$$\rho = \frac{P_T^*}{\gamma^*} \frac{\rho}{M^*}$$

$\rho = 0.06$

$\rho = 0.3$

$\rho = 0.5$

Dimuon pairs of Large P_T or small M
Theoretical Interpretations of Lam-Tung Violation in pion-induced DY

<table>
<thead>
<tr>
<th></th>
<th>Boer-Mulders Function</th>
<th>QCD chromo-magnetic effect</th>
<th>Glauber gluon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin of effect</td>
<td>Hadron</td>
<td>QCD vacuum</td>
<td>Pion specifically</td>
</tr>
<tr>
<td>Quark-flavor dependence</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hadron dependence</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Large P_T limit</td>
<td>0</td>
<td>Nonzero</td>
<td>0</td>
</tr>
</tbody>
</table>

Measurements with different beams $\pi^\pm, p, K^\pm, \bar{p}$ and at wide kinematical ranges would help differentiating the origin.

Competing with CERN COMPASS DY Program
Pasquini and Schweitzer (PRD 90, 014050 (2014))
Boer-Mulders Functions of Pion and Proton in Light-Front Constituent Model

(a) \(\nu(q_T)\) vs. \(q_T\) (GeV)

(b) \(\nu(q_T)\) vs. \(q_T\) (GeV)

(c) \(\nu(q_T)\) vs. \(q_T\) (GeV)

(d) \(\nu(x_1)\) vs. \(x_1\)

(e) \(\nu(x_1)\) vs. \(x_1\)

(f) \(\nu(x_1)\) vs. \(x_1\)
Consistency of LT relation for DY events in pd, pp
Boer-Mulders functions from unpolarized pD and pp Drell-Yan

Z. Lu and I. Schmidt,
PRD 81, 034023 (2010)

V. Barone et al.,
PRD 82, 114025 (2010)

\[h_1^{+q}(x, p_T^2) = h_1^{+q}(x) \frac{1}{\pi p_{bm}^2} \exp\left(-\frac{p_T^2}{p_{bm}^2}\right). \]

Sign of BM functions and their flavor dependence?
Flavor separation of the Boer–Mulders functions
Z. Lu et al. (PLB 639 (2006) 494)

\[
\langle W \rangle = \left\langle \frac{q_T^2 \cos 2\phi}{4M_A M_B} \right\rangle = \int d\phi d^2q_T \frac{d\sigma(h_A h_B \rightarrow l\bar{l}X)}{d\Omega dx_A dx_B d^2q_T} \frac{q_T^2 \cos 2\phi}{4M_A M_B}
\]

Deuterium target
Quark and Gluon Wigner Phase-Space Distributions in Protons

\[W(\vec{r}, x, \vec{k}_T) \]

\[\int d\vec{r} \]

\[e^{i\vec{q} \cdot \vec{r}} \int d\vec{r} d\vec{k}_T \]

\[\xi = q^z / 2E_q, \quad t = -q^2 \]

Transverse Momentum Dependent PDF \(f(x, \vec{k}_T) \)

Generalized Parton Distr. \(F(x, \xi, t) \)

\(x = 0 & \xi = 0 \)

PDF \(f(x) \)

Form Factors \(F_1(t), F_2(t) \)

Ji, PRL91,062001(2003)
Generalized Parton Distribution (GPD)

\[H_f(x,0,0) = q_f(x) = -\bar{q}_f(-x) \]
\[\tilde{H}_f(x,0,0) = \Delta q_f(x) = -\Delta \bar{q}_f(-x) \]

\[
\begin{align*}
\int dx \sum_{f} H_f(x,\xi,t) &= F_1(-t) \\
\int dx \sum_{f} E_f(x,\xi,t) &= F_2(-t) \\
\int dx \sum_{f} \tilde{H}_f(x,\xi,t) &= g_A(-t) \\
\int dx \sum_{f} \tilde{E}_f(x,\xi,t) &= g_p(-t)
\end{align*}
\]

\[J_f = \frac{1}{2} \Delta \Sigma^f + L_f = \frac{1}{2} \int_{-1}^{1} x dx [H_f(x,\xi,0) + E_f(x,\xi,0)] \]

Ji’s sum rule
Spacelike vs. Timelike Processes
Muller et al., PRD 86 031502(R) (2012)

Deeply Virtual Compton Scattering

\(q^2 < 0 \)

\begin{align*}
F(\xi = \eta, t, Q^2) \xrightarrow{\text{SL} \rightarrow \text{TL}} F(\xi = -\eta, t, -Q^2), \\
F(\xi, t, Q^2) &= \int_{-1}^{1} dx \sum_{i=u,d,\ldots,g} sT^i(x, \xi)F^i(x, \xi, t, \mu^2),
\end{align*}

Timelike Compton Scattering

\(q^2 > 0 \)

\(t < 0, \text{ space-like GPD} \)
Spacelike vs. Timelike Processes
Muller et al., PRD 86 031502(R) (2012)

Deeply Virtual Meson Production

Exclusive Meson-induced DY

\[q^2 < 0 \]

\[t < 0, \text{ space-like GPD} \]
\[\pi N \rightarrow \mu^+ \mu^- N \]

(PLB 523 (2001) 265)

\[
\begin{align*}
\pi \rightarrow \mu^+ \mu^- N & \quad \text{Diagram} \\
\pi(q) & \rightarrow \gamma(q') \rightarrow N(p') \quad \text{Decay} \\
\phi_\pi & \rightarrow H, E \quad \text{Decay} \\
\end{align*}
\]

\[
\begin{align*}
\frac{d\sigma}{dQ'^2 dt d(\cos \theta) d\varphi} &= \frac{\alpha_{em}}{256\pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda', \lambda} |M^{0\lambda', \lambda}(\pi^- p \rightarrow \gamma^* n)|^2 \sin^2 \theta, \\
Q'^2 &= q'^2 > 0, \\
t &= (p - p')^2, \\
\tau &= \frac{Q'^2}{2pq} \approx \frac{Q'^2}{s - M_N^2}, \\
\eta &= \frac{(p - p')^+}{(p + p')^+}
\end{align*}
\]

\[
\begin{align*}
M^{0\lambda', \lambda}(\pi^- p \rightarrow \gamma^* n) &= -ie \frac{4\pi f_\pi}{3} \frac{1}{Q'} (p + p')^+ \bar{u}(p', \lambda') \\
&\times \left[\gamma^+ \gamma_5 \tilde{H}^{du}(-\eta, \eta, t) + \gamma_5 (p' - p)^+ \tilde{\xi}^{du}(-\eta, \eta, t) \right] u(p, \lambda). \\
\tilde{H}^{du}(\xi, \eta, t) &= \frac{8}{3} \alpha_s \int \frac{dz}{1 - z^2} \\
&\times \int dx \left[\frac{e_d}{\xi - x - i\epsilon} - \frac{e_u}{\xi + x - i\epsilon} \right] \\
&\times \left[\tilde{H}^d(x, \eta, t) - \tilde{H}^u(x, \eta, t) \right],
\end{align*}
\]
\[\pi N \rightarrow \mu^+ \mu^- N \]

(PLB 523 (2001) 265)

\[
M^{0\lambda', \lambda}(\pi^- p \rightarrow \gamma^* n) = -i e \frac{4\pi f_\pi}{3} \frac{1}{Q' (p + p')^+} \bar{u}(p', \lambda') \times \left[\gamma^+ \gamma_5 \tilde{H}^{du}(-\eta, \eta, t) \right. \\
\left. + \gamma_5 (p' - p)^+ \frac{\tilde{d}u(-\eta, \eta, t)}{2M} \right] u(p, \lambda).
\]

\[
\tau = \frac{Q'^2}{2pq} \approx \frac{Q'^2}{s - M_N^2} = x_B
\]

\[
t = (p - p')^2
\]

\[
Q'^2 = q'^2 > 0
\]

\[
\eta = \frac{(p - p')^+}{(p + p')^+} = \frac{\tau}{2 - \tau}
\]

\[
\frac{d\sigma}{dQ'^2 dt d(\cos \theta) d\phi} = \frac{\alpha_{em}}{256\pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda', \lambda} |M^{0\lambda', \lambda}|^2 \sin^2 \theta,
\]
Differential Cross Sections \((Q^2, t, \tau)\)

\[
\frac{d\sigma}{d Q'^2 dt} (\pi^- p \rightarrow \gamma^n n)
\]

\[
= \frac{4\pi \alpha_{em}^2}{27} \frac{\tau^2}{Q'^8} f^2 \times \left[(1 - \eta^2) |\mathcal{H}_d u|^2 - 2\eta^2 \text{Re}(\mathcal{H}_d u^* \mathcal{E}_d u)
- \eta^2 \frac{t}{4M^2} |\mathcal{E}_d u|^2 \right],
\]

\(t = (p - p')^2 \)

\(\tau = \frac{Q'^2}{2pq} \approx \frac{Q'^2}{s - M^2_N} = x_B \)

\(Q'^2 = q'^2 > 0 \)

\(\eta = \frac{(p - p')^+}{(p + p')^+} = \frac{\tau}{2 - \tau} \)
Evaluation of Cross Sections

• Input:
 – GPD $\tilde{H}(x, \eta, t; Q^2)$, $\tilde{E}(x, \eta, t; Q^2)$
 – Pion distribution amplitude (DA) $\varphi(z; Q^2)$

• QCD evolutions:
 – GPD: Vinnikov framework for LO evolution
 – Pion DA: construction by Gegenbauer polynomials of order 3/2.

• Matrix elements of Exclusive DY.
• Differential cross sections (Q^2, t, τ)
GPD $\tilde{H}(x, \eta, t)$ Double Integration

$$\tilde{H}^u(x, \eta, t) - \tilde{H}^d(x, \eta, t)$$
$$= \left[\tilde{h}^u(x, \eta) - \tilde{h}^d(x, \eta) \right] g_A(t)/g_A(0).$$ \hspace{1cm} (6)

We take the parameterization $g_A(t)/g_A(0) = (1 - t/M_A^2)^{-2}$ with $M_A = 1.06$ GeV from [17]. The functions

$$\tilde{h}^q(x, \eta) = \int_0^1 dx' \int_{-1+x'}^{1-x'} dy'$$
$$\times \delta(x - x' - \eta y') \Delta q_V(x') \pi(x', y'),$$ \hspace{1cm} (38)

$$\pi(x', y') = \frac{3 (1 - x')^2 - y'^2}{4 (1 - x')^3}.$$ \hspace{1cm} (39)

$\tilde{H}(x, \eta = 0, t = 0)$=polarized valance distribution.
GPD $\tilde{E}(x, \eta, t)$ Pion-pole Dominance

\[
\tilde{E}^u(x, \eta, t) - \tilde{E}^d(x, \eta, t) = \Theta(\eta - |x|) \frac{1}{\eta} \phi_{\pi}\left(\frac{x}{\eta}\right) F(t)
\]

\[
F(t) = \frac{4.4 \text{ GeV}^2}{m_{\pi}^2 - t} \left[1 - \frac{B(m_{\pi}^2 - t)}{(1 - Ct)^2}\right]
\]

with $B = 1.7 \text{ GeV}^{-2}$ and $C = 0.5 \text{ GeV}^{-2}$. Note

\[
\tilde{E}^u - \tilde{E}^d(x, \xi, t) \xrightarrow{t \to m_{\pi}^2} \theta(|x| < |\xi|) \frac{1}{2|\xi|} \phi_{\pi}\left(\frac{x + \xi}{2\xi}\right) \frac{4m^2 g_A(0)}{m_{\pi}^2 - t}
\]
\[\pi N \rightarrow \mu^+ \mu^- N \]

\[Q'^2 = q'^2 = 5 \text{ GeV}^2 \]

\[\tau = \frac{Q'^2}{2pq} \approx \frac{Q'^2}{s-M_N^2} = 0.2 \]

Cross sections increase toward small \(s \)!

\[t = (p - p')^2 = -0.2 \text{ GeV}^2 \]

\[(1 - \eta^2) |\tilde{H}^{du}|^2 - 2\eta^2 \text{Re}(\tilde{H}^{du*}\tilde{E}^{du}) - \eta^2 \frac{t}{4M^2} |\tilde{E}^{du}|^2 \]

blue \hspace{1cm} red \hspace{1cm} green
GPD $\tilde{H}(x, \eta, t)$ Double Integration

$$F^i(x, \xi, t) = \int_{-1}^{1} d\rho \int_{-1+|\rho|}^{1-|\rho|} d\eta \delta(\rho + \xi \eta - x) f_i(\rho, \eta, t)$$

$$+ D_i(x, t) \Theta(\xi^2 - x^2),$$

(4)

$$f_i(\rho, \eta, t) = F^i(\rho, \xi = 0, t) w_i(\rho, \eta).$$

$$F^i(\rho, \xi = 0, t) = F^i(\rho, \xi = 0, t = 0) \exp(tp_{f_i}(\rho)).$$

$$p_{f_i}(\rho) = -\alpha'_{f_i} \ln \rho + b_{f_i},$$

$$w_i(\rho, \eta) = \frac{\Gamma(2n_i + 2)}{2^{2n_i+1} \Gamma^2(n_i + 1)} \frac{[(1 - |\rho|)^2 - \eta^2]^n_i}{(1 - |\rho|)^{2n_i+1}}$$
GPD $\tilde{H}(x, \eta, t)$ Double Integration

\[\tilde{H}^q_{\text{val}}(\rho, \xi = t = 0) = \eta_q A_q \rho^{-\alpha h_q(0)} (1 - \rho)^3 \sum_{j=0}^{2} \tilde{c}_{qj} \rho^j, \]

Table 2 Parameters used for the GPD \tilde{H}. Evolution is parametrized through the variable $L = \ln(Q^2/Q_0^2)$ with $Q_0^2 = 4 \text{ GeV}^2$

<table>
<thead>
<tr>
<th></th>
<th>u_{val}</th>
<th>d_{val}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha(0)$</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>α'</td>
<td>0.45 GeV$^{-2}$</td>
<td>0.45 GeV$^{-2}$</td>
</tr>
<tr>
<td>b_h</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\tilde{c}_0</td>
<td>$0.170 + 0.03L$</td>
<td>$-0.320 - 0.040L$</td>
</tr>
<tr>
<td>\tilde{c}_1</td>
<td>$1.340 - 0.02L$</td>
<td>$-1.427 - 0.176L$</td>
</tr>
<tr>
<td>\tilde{c}_2</td>
<td>$0.120 - 0.40L$</td>
<td>$0.692 - 0.068L$</td>
</tr>
</tbody>
</table>

42
GPD $\tilde{E}(x, \eta, t)$ Pion-pole Dominance

$\tilde{E}^u_{\text{pole}} = -\tilde{E}^d_{\text{pole}} = \Theta(|x| \leq \xi) \frac{F_P(t)}{4\xi} \Phi_\pi \left(\frac{x + \xi}{2\xi}\right),$

$F_P(t) = -m_N f_\pi \frac{2\sqrt{2} g_{\pi NN} F_{\pi NN}(t)}{t - m_\pi^2}.$

$F_{\pi NN} = \frac{\Lambda_N^2 - m_\pi^2}{\Lambda_N^2 - t'}$

with $\Lambda_N = 0.44$ GeV.

$\Phi_\pi(\tau) = 6\tau (1 - \tau) \left[1 + a_2 C_2^{3/2} (2\tau - 1) \right].$
Cross Sections of Exclusive DY

Cross sections increase toward small s!

A.V. Vinnikov, hep-ph/0604248

$\tau = \frac{Q^{'2}}{2pq} \approx \frac{Q^{'2}}{s - M_N^2} = 0.2$
Pion Distribution Amplitude
($Q^2 = 1 \text{ GeV}^2$)

\[\phi_\pi(z) \]

- Asym
- CZ
- Kroll
- DSE

DSE (PRL 111, 092001 (2013))
Pion Distribution Amplitude

\[\varphi_{\pi}(z, Q^2) = \varphi_{\pi}^{asym}(z)[1 + \sum_{j=2,4,6,\ldots}^{\infty} a_j^{3/2}(Q^2) C_j^{(3/2)}(z)] \]

\[\varphi_{\pi}(z, Q^2 \to \infty) = \varphi_{\pi}^{asym}(z) = \frac{3}{4} (1 - z^2) \]

\[C_j^{(3/2)} : \text{Gegenbauer } \alpha=3/2 \text{ polynomials} \]

<table>
<thead>
<tr>
<th>π DA</th>
<th>Asymptotic</th>
<th>Chernyak-Zhitnitsky (CZ)</th>
<th>Kroll</th>
<th>Dyson-Schwinger equation (DSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^2 \ (\text{GeV}^2)$</td>
<td>infty</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>a_2</td>
<td>0</td>
<td>0.56</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>a_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.093</td>
</tr>
<tr>
<td>a_6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.055</td>
</tr>
</tbody>
</table>

\[a_n^{\text{LO}}(\mu_F^2) = a_n(\mu_0^2) \left[\frac{\alpha_s(\mu_F^2)}{\alpha_s(\mu_0^2)} \right] \gamma_n^{(0)}/(2b_0) \]

QCD evolution
Pion Distribution Amplitude

$Q^2 = 4 \text{ GeV}^2$

$Q^2 = 10 \text{ GeV}^2$

$Q^2 = 100 \text{ GeV}^2$

$Q^2 = 10000 \text{ GeV}^2$
Pion DA Dependence: Pire GPD

The differential cross sections of exclusive DY process shows good sensitivity to pion DA $\varphi_\pi(z)$.
The differential cross sections of exclusive DY process shows good sensitivity to pion DA $\varphi_\pi(z)$.
The discrimination of pion DA and GPD could be done in multi-dimensional distributions.
Hard exclusive production process
Constituent-Counting Rule in Hard Exclusive Process
Kawamura et al., PRD 88, 034010 (2013)

\[\frac{d\sigma}{dt} (a + b \rightarrow c + d) = \frac{1}{s^{n-2}} f(\theta_{CM}) \]

\[n = n_a + n_b + n_c + n_d \]

\[n = 1 + 3 + 2 + 3 = 7 \]
\[\gamma + p \rightarrow \pi^+ + n \]

\[\pi^- + p \rightarrow K^0 + \Lambda \]
Quark Degrees of $\Lambda(1405)$

Kawamura et al., PRD 88, 034010 (2013)

$\pi^- + p \rightarrow K^0 + \Lambda(1405)$

$J_{PC}^i = 1^{--}(1405)$

$\frac{d^2\sigma}{dtds} = \frac{\mathcal{B}}{(s/\Lambda^2)^2}\left(\frac{\Lambda^2}{s}\right)^{3/2} = \frac{3\mathcal{B}}{(s/\Lambda^2)^2}\left(\frac{\Lambda^2}{s}\right)^{3/2}$

$\frac{d\sigma}{dQ} = \frac{\mathcal{B}}{s^{3/2}}$

A $\Xi(1530)/\bar{\Xi}(1530)$ resonance

$5q$ for $\Lambda(1405)$

$3q$ for $\Lambda(1405)$

1-100 pb

Thomas (’73)

Model I

Model II

5q scaling

J-PARC
Charm production process
WA98: π(252GeV) N→J/ψ +X
PRL 58, 2523 (1987)

qqbar annihilation dominating and exclusive production?

\[d^2\sigma/d\cos\theta d\phi = 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{1}{2} \nu \sin^2 \theta \cos 2\phi. \]

FIG. 4. The J/ψ decay angular distribution vs cosθ for the five regions of φ, and summed over all φ in the highest x_F bin, 0.95 < x_F < 1.0. The histograms are the result of the fit described in the text. (a) -π < φ < -0.6π, (b) -0.6π < φ < -0.2π, (c) -0.2π < φ < 0.2π, (d) 0.2π < φ < 0.6π, (e) 0.6π < φ < π, (f) -π < φ < π.
Cornell and SLAC:

SLAC:
Double Arm: published
Single arm: unpublished
large errors <12 GeV

\[\sigma : \text{SLAC} \approx \text{Cornell} \]

\[\frac{d\sigma}{dt} = A \cdot \exp Bt \]

E_\gamma GeV \quad 11. \quad 19
B (GeV)^{-2} \quad 1.13 \pm 0.18 \quad 2.9 \pm 0.3

Indication: a slow decrease of cross section towards the threshold
Production near threshold

Should probe the particle distributions at high \(x \).
Several constituents from the target should take part.
No detailed calculation exists so far.
Qualitative arguments on \(\sigma(E_\gamma) \)

\[
\frac{d\sigma}{dt} = N_2 g v \frac{(1-x)^2}{R^2 M^2} F_1 \left(\frac{t}{4} \right) (s - m_p^2)^2 \quad \frac{d\sigma}{dt} = N_3 g v \frac{(1-x)^0}{R^4 M^4} F_1 \left(\frac{t}{9} \right) (s - m_p^2)^2
\]

where:
\(x = \frac{S_{\text{thresh}} - m_p^2}{S - m_p^2} \), \(M = 2 m_c \), \(R \approx 1/m_c \)

- Applicable at \(x \approx 1 \Rightarrow E_\gamma < 12 - 15 GeV \)
- The factors \(N \) - fit to the data
Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce \(J/\psi, \Lambda_c \) and other Charm Hadrons at High \(x_F \)
J-PARC: An Exotic Charm Factory!

- Charm quarks at high x -- allows charm states to be produced with minimal energy
- Charm produced at low velocities in the target -- the target rapidity domain $x_F \sim -1$
- Charm at threshold -- maximal domain for producing exotic states containing charm quarks
- Attractive QCD Van der Waals interaction -- “nuclear-bound quarkonium”
 Miller, sjb; de Teramond,sjb
- Dramatic Spin Correlations in the threshold Domain σ_L vs. σ_T, A_{NN}
- Strong SSS Threshold Enhancement
A neutron target would be useful for the search of some exotic charmed baryons like $d du u \bar{c}$ in I=0 channel.
Missing mass Spectroscopy

- Large Acceptance, Multi-Particle
 - K, π from D⁰ decays
 - Soft π from D*⁻ decays
 - (Decay products from Υ_c*)
- High Resolution
- High Rate
 - SFT/SSD op. >10M/spill at K1.8

Use forward D mesons production
No Bias measurements up to 3GeV/c² of Charmed Baryon mass

Stage-1 approved by J-PARC PAC-18, August 12, 2014.
J-PARC E50 Spectrometer + MuID

Acceptance: ~ 60% for D^*, ~80% for decay π^+
Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity: ~2.1 Tm)
Yield Estimation

<table>
<thead>
<tr>
<th>Beam Energy</th>
<th>10 GeV/c</th>
<th>15 GeV/c</th>
<th>20 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Intensity</td>
<td>High</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Total Cross Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of Exclusive DY</td>
<td>High</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>of Inclusive DY</td>
<td>Low</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Acceptance</td>
<td>Low</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

π^- beam (prod. angle 0 deg)
π^+ beam (prod. angle 3.1 deg)
Yield Estimation

Assumptions:

- J-PARC High-\(p\) Beam Line
- Beam Time
 - \(\pi^-\) beam : 50 days (prod. angle 0 deg)
 - \(\pi^+\) beam : 150 days (prod. angle 3.1 deg)

- \(I_{\text{beam}} = 10^7 \pi/s\), Target; 57cm LH\(_2\), \(\varepsilon(\text{DAQ, Tracking, PID}) = 0.9*0.7*0.9\), \(\rightarrow 1\) events/day/pb
- Beam momentum resolution: \(\Delta p/p = 0.1\%\)
- Detector resolution: \(\Delta M/M = 1\%\)
Yield Estimation

Event Generator

- Inclusive Drell-Yan
 * Pythia 6.4.26

- Exclusive Drell-Yan

- Background
 * JAM 1.132

Particle Transportation + Detector

* Geant 4.9.3
 (E-50 spectrometer + Muon ID)

Total Cross Section

Inclusive Drell-Yan ($M_{\mu\mu}>1.5$ GeV)

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>π^-</th>
<th>π^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.11 nb</td>
<td>0.323 nb</td>
</tr>
<tr>
<td>15</td>
<td>2.71 nb</td>
<td>0.493 nb</td>
</tr>
<tr>
<td>20</td>
<td>3.08 nb</td>
<td>0.616 nb</td>
</tr>
</tbody>
</table>

Exclusive Drell-Yan ($M_{\mu\mu}>1.5$ GeV)

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>π^-</th>
<th>π^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.98 pb</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7.53 pb</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.83 pb</td>
<td></td>
</tr>
</tbody>
</table>

Background

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>π^-</th>
<th>π^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>26.9 mb</td>
<td>24.8 mb</td>
</tr>
<tr>
<td>15</td>
<td>25.8 mb</td>
<td>24.1 mb</td>
</tr>
<tr>
<td>20</td>
<td>25.1 mb</td>
<td>23.5 mb</td>
</tr>
</tbody>
</table>
Yield Estimation

Event Generator

- Inclusive Drell-Yan
 * Pythia 6.4.26

- Exclusive Drell-Yan

- Background
 JAM 1.132

Particle Transportation + Detector

* Geant 4.9.3
 (E-50 spectrometer + Muon ID)

Total Cross Section

<table>
<thead>
<tr>
<th></th>
<th>π^-</th>
<th>π^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 GeV</td>
<td>2.11 nb</td>
<td>0.323 nb</td>
</tr>
<tr>
<td>15 GeV</td>
<td>2.71 nb</td>
<td>0.493 nb</td>
</tr>
<tr>
<td>20 GeV</td>
<td>3.08 nb</td>
<td>0.616 nb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>π^-</th>
<th>π^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 GeV</td>
<td>9.98 pb</td>
<td></td>
</tr>
<tr>
<td>15 GeV</td>
<td>7.53 pb</td>
<td></td>
</tr>
<tr>
<td>20 GeV</td>
<td>5.83 pb</td>
<td></td>
</tr>
</tbody>
</table>

Background might be several times larger

<table>
<thead>
<tr>
<th></th>
<th>π^-</th>
<th>π^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 GeV</td>
<td>26.9 mb</td>
<td>24.8 mb</td>
</tr>
<tr>
<td>15 GeV</td>
<td>25.8 mb</td>
<td>24.1 mb</td>
</tr>
<tr>
<td>20 GeV</td>
<td>25.1 mb</td>
<td>23.5 mb</td>
</tr>
</tbody>
</table>
\[\pi^- p \rightarrow \mu^+ \mu^- n \]

\[M_X \text{ In E-50 Spectrometer + MuID} \]

\[\pi^- \text{ beam 50 days} \]

\[1.5 < M_{\mu^+\mu^-} < 2.9 \text{ GeV/c}^2 \]

Beam Momentum

- **10 GeV**

- **15 GeV**

- **20 GeV**

\[\text{Nevent (0.01 GeV/c}^2) \]

\[\text{Missing Mass } M_X \text{ (GeV/c}^2) \]

\[\text{Exclusive DY} \]

\[\text{Inclusive DY} \]

\[\text{BG} \]

The signal of exclusive Drell-Yan processes can be clearly identified in the missing mass spectrum of dimuon pairs.

Because of the low event rate, this study could be accommodated into the E50 experiment.
GPD(x_B, Q^2) in both space-like and time-like regime

J-PARC’s results in the time-like and large-Q^2 region will be complementary to what to be obtained in space-like processes from the deeply virtual Compton scattering (DVCS) deeply virtual meson scattering (DVMS) process to be measured in JLab.
Inclusive DY

$$\left(\pi^+/\pi^-\right) p \rightarrow \mu^+ \mu^- X$$

d/u measurement with E-50 Spectrometer + MuID

$$\pi^+ \text{ beam } 150 \text{ days}$$
$$\pi^- \text{ beam } 50 \text{ days}$$

$$1.5 < M_{\mu^+\mu^-} < 2.9 \text{ GeV/c}^2$$

Beam Momentum

10 GeV

15 GeV

20 GeV

$$\frac{d}{u}$$

Statistics strongly depends on the prod. angle for secondary beam

Red lines : CTEQ6.6M
Experimental Difficulties of Detecting $\pi^- p \rightarrow K^0 \Lambda(1405)$

• Multi-particle Acceptance:
 $\pi^- + p \rightarrow K^0 + \Lambda(1405)$
 $K^0 \rightarrow \pi^+ + \pi^-$
 $\Lambda(1405) \rightarrow \pi + \Sigma$

• Background?
Pion-Induced Exclusive Drell-Yan Process

Bernard Pire, IWHS2011

Small cross sections

Large \(t = (q - q')^2 \)

\[\phi_\pi : \text{pion distribution amplitude (DA) } \]

- DA characterizes the minimal valence Fock state of hadrons.
- DA of pion are also explored by pion-photon transition form factor in Belle and Barbar Exps.

\[\text{TDA : } \pi \text{-} \text{N transition distribution amplitude} \]

- TDA characterizes the next-to-minimal valence Fock state of hadrons.
- TDA of pion-nucleon is related to the pion cloud of nucleons.

Exclusive Vector Boson Production

- $\pi^- p \rightarrow \gamma^* n$
- $\pi^- p \rightarrow \gamma^* \Delta^0$
- $\pi^- n \rightarrow \gamma^* \Delta^-$
- $\pi^+ n \rightarrow \gamma^* p$
- $\pi^+ p \rightarrow \gamma^* \Delta^{++}$
- $\pi^+ n \rightarrow \gamma^* \Delta^+$
- $\pi^- p \rightarrow J/\psi n$
- $\pi^- p \rightarrow J/\psi \Delta^0$
- $\pi^- n \rightarrow J/\psi \Delta^-$
- $\pi^+ n \rightarrow J/\psi p$
- $\pi^+ p \rightarrow J/\psi \Delta^{++}$
- $\pi^+ n \rightarrow J/\psi \Delta^+$
New Physics Search in Drell-Yan like Processes
Dark Photon A’

Acceptance: ~ 60% for D^*, ~80% for decay π^+
Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity: ~2.1 Tm)
Summary (I)

• High-energy hadron beam at J-PARC is ideal for studying hard exclusive processes.
• The study of π-induced DY/charm production and hard exclusive processes will offer important understanding on
 • **Nucleon structure**: valence quarks PDF; TMD (BM), GPD (TDA)
 • π **structure**: DA and PDF
 • **Structure of exotic hadrons**
 • **J/ψ production mechanism, exotic charmed baryons**
Summary (II)

- Spectrometer with large acceptance and good mass resolution is required for the measurement and such measurement in E-50 conceptual detectors seems promising.
- Availability of deuterium target together with the detection of recoiled protons will enable the measurement of flavor separation of BM functions, valance-quark distributions at large-x and search for some exotic charmed baryons.
- More collaborators are critically necessary!
Questions

• Will the factorization of exclusive DY process based on a crossing symmetry of DVMP process be a major concern?

• What is the relationship between the inclusive DY process at xF→ 1 limit and the exclusive one? If these two processes are different, how to differentiate them experimentally, e.g. the missing mass or angular distribution of dimuon pairs?

• What is the relationship between the inclusive J/psi production process at xF→ 1 limit and the exclusive one?