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Spin and orbital AM in optics 



SAM and OAM in paraxial beams 
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SAM and OAM in paraxial beams 

Since 1992: 



Observations of the SAM and OAM 

We clearly see different manifestations of the SAM and 
OAM in paraxial optical beams via spinning and orbital 
motion of a probe particle, determined by the helicity 
and vortex quantum numbers: 
  
 

O’Neil et al., PRL (2002);  Garces-Chavez et al., PRL (2003) 

   Frad ∝ 

  Trad ∝σ



SAM and OAM in nonparaxial fields 

However, in nonparaxial fields, the separation of the 
SAM and OAM becomes nontrivial. For instance, in a 
tightly-focused beam, a probe particle shows the presence 
of a   –dependent orbital AM: 
  
 

Y. Zhao et al., PRL 99, 073901 (2007) 

σ

Spin–to–orbital AM conversion 

  Frad ∝σ
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A spin continuity equation similar to Eq. (4.3) was suggested by Alexeyev et al. [19] and later 
considered by others [21,22]. However, in those papers, the authors considered complex 
nonstationary fields, i.e., complex solutions of real Maxwell equations (2.1). As far as we know, 
such fields do not exist in real world. 
 

 
Figure 2. Spin-to-orbit AM conversion appears in nonparaxial optical fields in free space. 
A spherical geometry in momentum space (stemming from the electromagnetic wave 
transversality) and the Berry-phase contribution results in a polarization-dependent part of 
the orbital AM of a nonparaxial field [14,24]. For instance, (a) a tightly focused circularly-
polarized (σ = ±1) optical beam without a vortex (  = 0 ) nonetheless exhibits a circulating 
orbital momentum PO  proportional to σ 1− cosθ0( )  (θ0  being the characteristic focusing 
aperture angle). Experimental pictures (b) from [24c] demonstrate a spin-dependent orbital 
motion of a small particle in such a tightly focused field, i.e., the presence of the σ -
dependent orbital AM. The spin-to-orbital converted part of the AM flux is precisely 
described by the Δαβγ  correction, Eqs. (3.11), (3.17), and (3.23), see subsection 4.2. 

 

4.2. Spin and orbital AM fluxes in nonparaxial optical beams. 
As an application of the above general results, we consider the spin and orbital AM in 

nonparaxial optical vortex beams (e.g., Bessel beams) [1,13,14,20,36,37]. Straightforward 
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Mechanism: σ-dependent interference effects  
of z-component   with x, y-components of the field. 

σ = +1 

σ = −1 E = ex ± 

σiey Δx ∝ σ 

SAM and OAM in nonparaxial fields 

Furthermore, breaking the cylindrical symmetry reveals 
nontrivial    –dependent positions of light: 
  
 

σ

Spin–Hall effect 

   y σ k −1

 φ ∈ −π / 2,π / 2( )

B. Zel’dovich et al., JETP Lett. (1994); K.Y. Bliokh et al., PRL (2008) 



Quantum approach to SAM and OAM 



Quantum approach to SAM and OAM 

Akhiezer & Berestetskii, “Quantum Electrodynamics” (1965): 

“The separation of the total AM into orbital and spin 
parts has restricted physical meaning. ... States with 
definite values of OAM and SAM do not satisfy the 
condition of transversality in the general case.” 
 
Landau & Lifshitz, “Quantum Electrodynamics” (1982): 

“Only the total AM of the photon has a meaning. … 
It is nevertheless convenient to define ‘spin’ s and 
‘orbital AM’ l as formal auxiliary quantities.” 
 
Barnett & Allen, Opt. Commun. (1994): 

“In the general nonparaxial case there is no separation 
into   –dependent orbital and    –dependent spin AM” σ 



Canonical SAM and OAM operators 

The total AM operator for photon represents  
a sum of the OAM and SAM operators: 

  M̂ = r̂ × p̂+ Ŝ ≡ L̂ + Ŝ
ˆ ,i= ∂kr ˆ ,=p k

( )ˆ
a aijij

S iε= −

  

L̂z = −i∂φ ,

Ŝz( )
ij
= −iε zij

z-components and their paraxial eigenmodes: 

   = 1

   = −1
   = 0

σ = 1

σ = −1

   Eσ ∝ x + iσ y( )eiφ

  

σ = ±1
 = 0,±1,±2,...



Canonical SAM and OAM operators 

In a nonparaxial case, instead of the full 3D geometry, 
Maxwell fields are subjects to the transversality constraint:  

   
E k( ) ⋅k = 0

   L̂ E ⊥ κ,    Ŝ E ⊥ κ although    M̂ E ⊥ κ

The SAM and OAM operators 
conflict with the transversality: 

  
E k( ) ⊥ κ

/ k=κ k
It brings about a 2D spherical  
geometry in k–space  
(cf. Berry phase):   



Canonical SAM and OAM operators 

Furthermore, if we construct nonparaxial analogues of  
the circularly–polarized vortex beams: 

This resembles spin–to–orbital AM conversion: 

    
Eσ ∝ eθ + iσ eφ( )eiσφeiφ ≡ eσ κ( )eiφ ,
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4.2. Spin and orbital AM fluxes in nonparaxial optical beams. 
As an application of the above general results, we consider the spin and orbital AM in 

nonparaxial optical vortex beams (e.g., Bessel beams) [1,13,14,20,36,37]. Straightforward 

   Lz = + γ σ , Sz = 1−γ( )σ  γ ∝θ 2

then the SAM and OAM expectation values yield 



Modified SAM and OAM operators 

To resolve the conflict of the SAM and OAM operators 
with the transversality, we suggest the modified separation 
of the SAM and OAM, 

  ˆ ′L = L̂ + Δ̂ = ′r̂ × k
  
ˆ ′S = Ŝ− Δ̂ = κ κ ⋅ Ŝ( ) ≡ κσ̂

  
Δ̂ = −κ × κ × Ŝ( )

  M̂ = ˆ ′L + ˆ ′S :

The modified SAM has the natural helicity form, while 
the modified OAM reveals the Pryce position operator:  

   
′r̂ = r̂ + k × Ŝ( ) / k 2

cf. M.H.L. Pryce, PRSLA (1948) 

K.Y. Bliokh et al., PRA 82, 063825 (2010) 



Modified SAM and OAM operators 

These modified operators                represent projections 
of the canonical operators onto the transversality subspace. 
 
1. They are consistent with the transversality: 
  
 
2. They have the same expectation values: 
 
 
3. They illuminate observable spin–orbit interaction 
phenomena: Berry phase, spin–to–orbital AM conversion, 
and spin–Hall effect (shown below).  

  ˆ ′L , ˆ ′S , ˆ′r

   ˆ ′L E ⊥ κ,    ˆ ′S E ⊥ κ ,    ̂ ′r E ⊥ κ

  
L′ = L , ′S = S , ′r = r

K.Y. Bliokh et al., PRA 82, 063825 (2010) 



Modified SAM and OAM operators 

4. The modified operators possess “strange” commutation 
relations: 
 
 
 
 
 
 
 
But they all transformed as vectors: 
 

Modified commutation relations correspond to rotations/
translation “restricted” by the transversality. 

S. Barnett, JMO (2010); I. Fernandez–Corbaton et al. (2013) 

  
M̂i , ˆ ′Oj

⎡⎣ ⎤⎦ = iε ijl
ˆ ′Ol

  
ˆ′ri , ˆ′rj

⎡⎣ ⎤⎦ = −iε ijlσ̂ kl / k 3

  
ˆ′Si , ˆ′S j

⎡⎣ ⎤⎦ = 0,
  

ˆ′Li , ˆ′Lj
⎡⎣ ⎤⎦ = iε ijl

ˆ′Ll − ˆ′Sl( ),

  
ˆ′Li , ˆ′S j

⎡⎣ ⎤⎦ = iε ijl
ˆ′Sl ,

cf.  van Enk & Nienhuis, JMO (1994); Pryce (1948); Bialynicki-Birula, PRD (1987);  
      Skagerstam (1992); Berard & Mohrbach, PLA (2006) 



Modified SAM and OAM operators 

Remakably, all modified operators are diagonalized in the 
helicity basis: 

   
Û κ( ) = R̂z −φ( ) R̂y −θ( ) R̂z φ( ) : ex ,e y ,ez( )→ e+ ,e− ,κ( )

   Ô→ Û †ÔÛ

   ˆ ′L = L̂ − σ̂A × k,    ′r̂ = r̂ − σ̂A  ˆ ′S = κσ̂ ,

 σ̂ = diag 1,−1,0( )
   
A = 1− cosθ

k sinθ
φ

    
F = ∂k×A = k

k 3

– Berry connection and curvature  
describing parallel transport of the 
electric field on the k–space sphere. 



   E(k)

Application to Bessel beams 

We now apply these general results to an example of a 
nonparaxial electromagnetic field – vector Bessel beams. 
 

They have a very simple spectrum, a circle in k–space, and 
we assume that all waves have the same helicity    : 

   
E
σ ∝δ θ −θ0( )eiφ

Real–space field shows nonparaxial 
   –dependent corrections: 

σ

   

I
σ ρ( )∝ a2J

2 ρ( )
+b2J+2σ

2 ρ( ) + 2abJ+σ
2 ρ( )

b ∝θ0
2

σ



Application to Bessel beams 

Calculating the OAM and SAM expectation values in the 
Bessel beam, we obtain: 

   Lz = +σ ΦB ,   Sz =σ 1− ΦB( )

     
ΦB ≡

ΦB

2π
= 1

2π
A ⋅

C
∫ dk = 1− cosθ0

�  Berry phase ! 

Thus, the spin–to–orbit AM conversion 
in nonparaxial fields originates from the 
Berry phase associated with the 
azimuthal distribution of partial waves. 

   E(k)



Application to Bessel beams 

The transverse real–space intensity distributions show  
   –dependent  radii: σ

1σ = − 1σ =

   = 4

   = 1

  k⊥R
σ = +σ Φ = Lz

The beam radius is determined by the OAM value and 
quantization (with Berry phase) and fine SOI splitting of 
the caustic: 

 

σ +σ −



The    –dependent radius and OAM was demonstrated in a 
circular plasmonic cavity generating Bessel modes: 

Application to Bessel beams 

Y. Gorodetski et al., PRL (2008)  [cf. QHE in graphene]. 

  ΦB = 2π θ0 = π / 2 ,

   = 1

  +σ ΦB = +σ
1σ = − 1σ =

1σ = ±

σ



Application to Bessel beams 

Breaking the cylindrical symmetry unveils the    –dependent 
position of light, i.e., the spin–Hall effect: 

1σ = −

1σ =

   = −4    = 0    = 4

   y ∝ k⊥
−1 +σ ΦB( )

B. Zel’dovich et al. (1994)  
K.Y. Bliokh et al. (2008) 
K.Y. Bliokh et al. (2010) 

( ),φ δ δ∈ −

σ



Application to Bessel beams 

Such spin Hall effect was observed in a plasmonic 
semicircular lens: 

K.Y. Bliokh et al., PRL (2008) 

   = 0

1σ = −

1σ =

 φ ∈ −π / 2,π / 2( )
  y ~σ k −1

  ΦB = 2π θ0 = π / 2 ,



Summary for quantum approach 

•  All difficulties with the transversality and canonical 
SAM and OAM operators can be overcomed. 

•  Spin and orbital AM are meaningful and separately 
measurable properties of light. 

•  They exhibit nontrivial spin–orbit interaction 
features (stemming from the tranversality): helicity–
dependent OAM and position.  

S.J. Van Enk and G. Nienhuis, J. Mod. Opt. 41, 963 (1994)  
K.Y. Bliokh et al., Phys. Rev. A 82, 063825 (2010) 

S.M. Barnett, J. Mod. Opt. 57, 1339 (2010) 
I. Bialynicky–Birula & Z. Bialynicky–Birula, J. Opt. 13, 064014 (2011) 

I. Fernandez–Corbaton et al., arXiv:1308.1729 (2013) 
K.Y. Bliokh et al., New J. Phys. (2014, in press) 



Field–theory approach to SAM and OAM 



Field theory approach 

Quantum approach describes the SAM and OAM in the 
k–space or via their integral expectation values.  
However, in optics we can measure the SAM and OAM 
locally in real space. To describe the spin and orbital 
densities and currents, we have to use the field theory. 
  
 

   Frad ∝ 

  Trad ∝σ



Canonical Noether currents 

Poincaré symmetries and electromagnetic free-space 
Langrangian lead to the canonical Noether currents: 
  
 

  ∂βT αβ = 0,    T
α 0 = W ,P( )  T

αβ ≠ T βα

�  Canonical stress–energy tensor (nonsymmetric) 

�  Canonical AM tensor: OAM + SAM parts (nonconserved) 

  ∂γ M αβγ = 0,

 M αβγ = rαT βγ − r βT αγ + Sαβγ ≡ Lαβγ + Sαβγ

 M = r × P + S ≡ L + S

  ∂γ Sαβγ = −∂γ Lαβγ = T αβ −T βα ≠ 0



Canonical Noether currents 

Explicitly: 
  
 
 
 
 
 
 
These quantities are gauge–dependent, and, therefore, 
physically meaningless in traditional field theory: 
 
Not unique, nonobservable, only gravitation matters, … 

 P = E ⋅ ∇( )A

 L = r × P = E ⋅ r ×∇( )A

�  Canonical momentum density 

 S = E× A
�  OAM and SAM densities 

Any field–theory textbook or expert: S. Deser, I. Bialynicky-Birula, F. Hehl    



Belinfante symmetrized currents 

Belinfante’s symmetrization procedure results in gauge–
invariant and properly symmetric tensors: 
  

Belinfante (1940), Rosenfeld (1940) 

Poynting vector = canonical momentum + spin momentum 

   T
αβ = T αβ + ∂γ Kαβγ ,     T

α 0 = W ,P( )  T
αβ = T βα

  P = E ⋅ ∇( )A − E ⋅∇( )A = E×B

This total AM density includes both orbital and spin 
parts (plane-wave paradox) but they are nonseparable.  

   M
αβγ = rαT βγ − r βT αγ ,   M = r ×P



Belinfante symmetrized currents 

Belinfante’s procedure ‘improves’ stress–energy tensor 
but eliminates one degree of freedom: spin. 
 
Instead of the SAM density it introduces an enigmatic 
spin momentum current. This is an analgoue of the 
boundary magnetization current, which does not 
transport energy and is not observable per se.  

Am. J. Phys. (1986, 2000)  

   S∫ d 3r = r × PS∫ d 3r,    ∇⋅PS = 0



Gauge invariance issue 

To make the canonical spin and orbital quantities 
gauge–invariant, typically the transverse part of the 
vector–potential is assumed (= Coulomb gauge): 
  
 
But the transverse vector–potential is nonlocal: 
 
  
 
However, it becomes local and meaningful in the most 
important case of monochromatic optical fields: 

  A → A⊥ , ∇⋅A = 0

   
A r( )∝ ′∇ ×B ′r( )

r − ′r∫ d 3 ′r

   A r( )∝−iω E r( )     O r,t( ) = Re O r( )e− iω t⎡⎣ ⎤⎦



Application to optical fields 

Thus, the gauge–invariant local momentum, OAM, and 
SAM densities follow from the canonical Noether 
tensors for monochromatic fields: 
 
 
 
 
 
 
 
These have very clear physical meanings:  
the polarization-independent phase gradient     and the 
normal to the polarization ellipse times its ellipticity    .   

   
P = 1

2ω
Im E* ⋅ ∇( )E⎡⎣ ⎤⎦ ∝ E( p̂ E)

  L = r × P ,
   
S = 1

2ω
Im E* ×E( ) ∝ E( Ŝ E)

 P
 S



Application to optical fields 

Most importantly, the canonical momentum and spin 
densities immediately appear in optical experiments. 
They determine the radiation pressure and torque on a 
point electric dipole: 
 
   F

rad ∝ Im α( )P ,   T
rad ∝ Im α( )S

  Frad ∝P

  Trad ∝S

Ashkin & Gordon (1983) 
Canaguier-Durand (2013) 
Bliokh et al. (2013, 2104) 



Application to optical fields 

Furthermore, other measurements of the optical 
momentum density reveal the canonical momentum  
rather than the Poynting vector! E.g. quantum weak 
measurements of photon trajectories = streamlines of         . 

Berry, JO (2009), Wiseman, NJP (2009) 
Kocsis et al., Science (2011)   

Bliokh et al., NJP (2013) 

  P r( )

   

P r( )
W r( ) ∝ Re

r p̂ψ
r ψ

≡ p
weak

Physics World: 
The top breakthrough 2011 



Thus, despite the common optical and field–theory 
belief, it is the components of the canonical Noether 
tensors (in Coulomb gauge) rather than symmetrized 
Belinfante tensors that naturally appear in optical and 
quantum experiments measuring momentum and AM 
densities in optical fields. 
 
In particular, the Poynting vector and its Belinfante’s 
spin part are unobservable in optics. 
 
Surprisingly, it seems that we only very recently drew 
the proper attention to these remarkable facts! 

Application to optical fields 

Bliokh et al., New J. Phys. (2013, 2013, 2014); Nature Commun. (2014) 



Let us check the correspondence between the field–
theory and quantum approaches. 
 
The integral OAM and SAM are separately conserved : 
 
 
These are proportional to the expectation values of the 
OAM and SAM operators,     and    .   
 
These quantities can be quantized via      to obtain the 
second–quantization OAM and SAM field operators 
that act on Fock states of photons:     and    . 

Conformity with the quantum approach 

S.J. van Enk and G. Nienhuis, J. Mod. Opt. 41, 963 (1994)  

   ∂t L∫ d 3r = 0 ,    ∂t S∫ d 3r = 0

  L̂   Ŝ

  L̂   Ŝ

 A⊥



Remarkably, the second–quantization OAM and SAM 
operators obey the same “strange” commutation 
relations as the modified operators      and     : 
  
 
 
 
 
Considering the quantum photon–atom interaction 
(akin to the light–particle interaction), van Enk & 
Neinhuis conclude: “both SAM and OAM of a photon 
are well defined and separately measurable.” 

Conformity with the quantum approach 

S.J. van Enk and G. Nienhuis, J. Mod. Opt. 41, 963 (1994)  

  ˆ ′L   ˆ ′S

   
Ŝi ,Ŝ j
⎡
⎣

⎤
⎦ = 0,

   
L̂i ,L̂ j
⎡⎣ ⎤⎦ = iε ijl L̂l − Ŝl( )

   
L̂i ,Ŝ j
⎡
⎣

⎤
⎦ = iε ijlŜl ,



Thus, there is a perfect agreement between the 
field–theory, 1st–quantization, and 2nd–quantization 
approaches. 
 
There is only one remaining issue. The field–theory  
OAM and SAM Noether currents are not conserved 
locally: 
 
 
Belinfante ‘improved’ the stress–energy tensor       , but 
lost the spin and orbital properties. Instead, we will 
improve the SAM and OAM Noether currents                . 

Local OAM and SAM conservation 

K.Y. Bliokh, J. Dressel, F. Nori, New J. Phys. (2014)  

  ∂γ Sαβγ = −∂γ Lαβγ = T αβ −T βα ≠ 0

 T αβ

  S
αβγ , Lαβγ



We modify the separation of the spin and orbital parts 
in the canonical AM current (akin to the OAM and 
SAM operators),  
 
 
 
 
This makes the modifies currents conserved: 

 
 
Here         modifies the AM fluxes but not densities: 

Local OAM and SAM conservation 

  ′L αβγ = Lαβγ + Δαβγ ,  ′S αβγ = Sαβγ − Δαβγ

  M
αβγ = ′L αβγ + ′S αβγ :

 Δ
αβ0 = 0 , Δαβγ = −Δβαγ

 T
αβ −T βα = ∂γ Δ

αβγ

Δαβγ

  ∂γ ′S αβγ = −∂γ ′L αβγ = 0

– using transversality 



Li = E ⋅ r × ∇( )A⎡⎣ ⎤⎦i
,

′Λij = − B× r × ∇( )i A⎡⎣ ⎤⎦ j
− 1

2
ε ijkrk E2 − B2( ) + Bj Ai

Explicitly, we obtain the new local OAM and SAM 
conservation laws (            ): 

Local OAM and SAM conservation 

   Si = E× A( )i
, ′Σ ij = δ ij B ⋅A( )− Bi Aj − Bj Ai

∂t Si + ∂ j ′Σij = 0 :

∂t Li + ∂ j ′Λij = 0 :

K.Y. Bliokh, J. Dressel, F. Nori, New J. Phys. (2014)  

A = A⊥



The modified OAM and SAM fluxes not only provide 
formal conservation laws, but also correspond to 
observable spin–orbit interaction effects. 
 
Normalized OAM and SAM fluxes in nonparaxial beams:    

Local OAM and SAM conservation 

 

Λzz

Pz

= 1
k
+σ ΦB( )∝ Lz ,

Σ zz

Pz

= σ
k

1− ΦB( )∝ Sz
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A spin continuity equation similar to Eq. (4.3) was suggested by Alexeyev et al. [19] and later 
considered by others [21,22]. However, in those papers, the authors considered complex 
nonstationary fields, i.e., complex solutions of real Maxwell equations (2.1). As far as we know, 
such fields do not exist in real world. 
 

 
Figure 2. Spin-to-orbit AM conversion appears in nonparaxial optical fields in free space. 
A spherical geometry in momentum space (stemming from the electromagnetic wave 
transversality) and the Berry-phase contribution results in a polarization-dependent part of 
the orbital AM of a nonparaxial field [14,24]. For instance, (a) a tightly focused circularly-
polarized (σ = ±1) optical beam without a vortex (  = 0 ) nonetheless exhibits a circulating 
orbital momentum PO  proportional to σ 1− cosθ0( )  (θ0  being the characteristic focusing 
aperture angle). Experimental pictures (b) from [24c] demonstrate a spin-dependent orbital 
motion of a small particle in such a tightly focused field, i.e., the presence of the σ -
dependent orbital AM. The spin-to-orbital converted part of the AM flux is precisely 
described by the Δαβγ  correction, Eqs. (3.11), (3.17), and (3.23), see subsection 4.2. 

 

4.2. Spin and orbital AM fluxes in nonparaxial optical beams. 
As an application of the above general results, we consider the spin and orbital AM in 

nonparaxial optical vortex beams (e.g., Bessel beams) [1,13,14,20,36,37]. Straightforward 



Summary for field–theory approach 

•  Canonical Noether tensors (in Coulomb gauge) 
rather than the Belinfante tensors are meaningful 
and observable for optical fields. 

•  The OAM and SAM following from these tensors are 
perfectly consistent with quantum approaches. 

•  The canonical OAM and SAM fluxes should be 
corrected with a spin–orbit term providing local 
conservation laws and corresponding to observable 
effects.  

S.J. Van Enk and G. Nienhuis, J. Mod. Opt. 41, 963 (1994)  
K.Y. Bliokh et al., New J. Phys. 15, 033026 (2013); New J. Phys. 15, 073022 (2013); 

Nature Commun. 5, 3300 (2014); New J. Phys. (2014, in press) 
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Thank you! 




