現代的核カから出発した大規模 殻模型計算による¹⁶Cの構造

藤井 新一郎(東大CNS)

- 1. 最近の¹⁶Cについての研究
- 2. 微視的有効相互作用の導出
- 3. 大規模殼模型計算
- 4.計算結果(低励起エネルギー準位, B(E2)) 5.まとめ

共同研究者 水崎 高浩(専修大自然)

大塚 孝治(東大理)

- 瀬部 孝(法大工)
- 有馬 朗人(科技団)

KEK原子核研究会「現代の原子核物理 -多様化し進化する原子核の描像-」 2006年8月1-3日, KEK

Anomalously Hindered E2 Strength $B(E2; 2_1^+ \rightarrow 0^+)$ in ¹⁶C

N. Imai,^{1,*} H. J. Ong,² N. Aoi,¹ H. Sakurai,² K. Demichi,³ H. Kawasaki,³ H. Baba,³ Zs. Dombrádi,⁴ Z. Elekes,^{1,†} N. Fukuda,¹ Zs. Fülöp,⁴ A. Gelberg,⁵ T. Gomi,³ H. Hasegawa,³ K. Ishikawa,⁶ H. Iwasaki,² E. Kaneko,³ S. Kanno,³ T. Kishida,¹ Y. Kondo,⁶ T. Kubo,¹ K. Kurita,³ S. Michimasa,⁷ T. Minemura,¹ M. Miura,⁶ T. Motobayashi,¹ T. Nakamura,⁶ M. Notani,⁷ T. K. Onishi,² A. Saito,³ S. Shimoura,⁷ T. Sugimoto,⁶ M. K. Suzuki,² E. Takeshita,³ S. Takeuchi,¹ M. Tamaki,⁷ K. Yamada,³ K. Yoneda,^{1,‡} H. Watanabe,¹ and M. Ishihara¹ ¹RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan ²Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan ³Department of Physics, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima, Tokyo 171-8501, Japan ⁴ATOMKI, H-4001 Debrecen, P.O. Box 51, Hungary ⁵Institut für Kernphysik der Universität zu Köln, D-50937 Köln, Germany ⁶Department of Physics, Tokyo, Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo 152-8551, Japan ⁷CNS, University of Tokyo, RIKEN campus, Hirosawa 2-1, Wako, Saitama 351-0198, Japan (Received 17 August 2003; published 12 February 2004)

The electric quadrupole transition from the first 2^+ state to the ground 0^+ state in ${}^{16}C$ is studied through measurement of the lifetime by a recoil shadow method applied to inelastically scattered radioactive ${}^{16}C$ nuclei. The measured mean lifetime is 77 + 14(stat) + 19(syst) ps. The central value of mean lifetime corresponds to a $B(E2; 2^+_1 \rightarrow 0^+)$ value of $0.63e^2$ fm⁴, or 0.26 Weisskopf units. The transition strength is found to be anomalously small compared to the empirically predicted value.

DOI: 10.1103/PhysRevLett.92.062501

PACS numbers: 23.20.Js, 21.10.Tg, 27.20.+n, 29.30.Kv

Experiment

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 586 (2004) 34-40

www.elsevier.com/locate/physletb

Decoupling of valence neutrons from the core in ^{16}C

Z. Elekes ^{a,1}, Zs. Dombrádi^b, A. Krasznahorkay^b, H. Baba^c, M. Csatlós^b, L. Csige^b,
N. Fukuda^a, Zs. Fülöp^b, Z. Gácsi^b, J. Gulyás^b, N. Iwasa^d, H. Kinugawa^c, S. Kubono^e,
M. Kurokawa^e, X. Liu^e, S. Michimasa^e, T. Minemura^e, T. Motobayashi^a, A. Ozawa^a,
A. Saito^c, S. Shimoura^e, S. Takeuchi^a, I. Tanihata^a, P. Thirolf^f, Y. Yanagisawa^a,
K. Yoshida^a

^a The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
 ^b Institute of Nuclear Research of the Hungarian Academy of Sciences, PO Box 51, H-4001 Debrecen, Hungary
 ^c Rikkyo University, 3 Nishi-Ikebukuro, Toshima, Tokyo 171, Japan
 ^d Tohoku University, Sendai, Miyagi 9808578, Japan
 ^e University of Tokyo, Tokyo 1130033, Japan
 ^f Ludwig-Maximilians-Universität München, D-85748 Garching, Germany

Received 4 December 2003; received in revised form 10 February 2004; accepted 11 February 2004

Editor: J.P. Schiffer

Abstract

The neutron and proton excitations in 16 C nucleus have been investigated by use of the Coulomb-nuclear interference method applied to the ${}^{208}\text{Pb} + {}^{16}\text{C}$ inelastic scattering. Angular distribution of the ${}^{16}\text{C}$ nuclei in the inelastic channel populating the first 2⁺ state has been measured. The neutron and proton transition matrix elements, M_n and M_p , have been determined from the "Coulomb" and "matter" deformation-length parameters obtained by distorted wave calculations. The M_p or its corresponding $B(\text{E2}; 2^+_1 \rightarrow 0^+)$ value was found to be extremely small: 0.28 ± 0.06 Weisskopf units consistent with a recent lifetime measurement. Furthermore, the extracted M_n/M_p ratio has an unexpectedly large value of 7.6 ± 1.7 . These results suggest that the 2^+_1 state in ${}^{16}\text{C}$ is a nearly pure valence neutron excitation.

© 2004 Published by Elsevier B.V.

PACS: 25.70.De; 24.10.Eq; 29.30.Kv; 21.10.Gv; 27.20.+n

Keywords: Coulomb excitation of ¹⁶C; Angular distribution; Distorted wave calculation; Neutron and proton transition matrix elements

Experiment

Shell-model calc. in the psd (2ħω) space (R. Fujimoto, Ph. D. Thesis, Univ. of Tokyo, 2003)

 $B(E2; 2_1^+ \rightarrow 0_1^+)$ in $e^2 \text{fm}^4$ ($e_p = 1.3e$, $e_n = 0.5e$)

	present	PSDMK2	PSDWBP	PSDWBT	Expt.
¹² C	11.78	12.06	11.41	11.36	8.2 ±1.0
¹⁴ C	8.18	8.69	8.11	8.18	3.74 ± 0.50
¹⁶ C	8.05	8.37	8.70	8.05	$0.63 \pm 0.11(\text{stat}) \pm 0.16(\text{syst})$
¹⁸ C	10.26	13.18	12.81	12.33	?

New approach to neutron-rich C isotopes

• Large-scale shell model

- Code: newly developed version of MSHELL
- Model space: the 0s 1p0f shells
- Nucleon excitation: up to 2 nucleons from the occupied shells for ¹⁴C

up to 2 nucleons to the 1p0f shells

Bare charge

• Microscopic effective interaction

Derived from a high-precision NN interaction (CD Bonn, …) and the Coulomb force in the neutron-proton formalism for the given model space through a unitary-transformation theory

Derivation of effective interaction

• Eff. int. in a huge model space

• Eff. int. in the 0s - 1p0f shells

 $\rho_1 = 2n_a + l_a + 2n_b + l_b$ ({ n_a, l_a } and { n_b, l_b }: sets of h.o. quantum numbers of two-body states)

For details,

- S. F., T. Mizusaki, T. Otsuka, T. Sebe, and A. Arima, nucl-th/0602002.
 S. F., R. Okamoto, and K. Suzuki, Phys. Rev. C 69, 034328 (2004).

In the present shell model without any adjustable parameters

→ wrong ordering for the 1/2⁺ and 5/2⁺ states in ¹⁵C due to the *small* modelspace size

To remedy the wrong ordering and reproduce the binding energies for the $1/2^+$ and $5/2^+$ states of the UMOA results

→ introduce a minimal refinement of the one-body energies for the $0d_{5/2}$ and $1s_{1/2}$ orbits of the neutron

The calculated results are denoted by "dressed"

Summary

- Developed a new shell-model framework to microscopically investigate neutron- or proton-rich exotic nuclei
 - Large-scale shell-model code new MSHELL
 - Microscopic effective interaction derived from modern NN interactions through a unitary-transformation theory
- Experimental low-lying energy levels and B(E2) in neutron-rich carbon isotopes including ¹⁶C
 → well reproduced by the calculation
- Including the genuine three-body force and diminishing the approximations in the calculation